

2 CROSSTALK The Journal of Defense Software Engineering September 2008

4

10

15

19

24

26

Securing Legacy C Applications Using Dynamic Data Flow
Analysis
This article describes an extensible, compiler-based system that ensures that
C programs enforce a wide variety of user-defined security policies with a
minimum of runtime overhead and disruption to development processes.
by Steve Cook, Dr. Calvin Lin, and Walter Chang

Building Secure Systems Using Model-Based Engineering and
Architectural Models
This article shows how model-based engineering and architectural modeling
are a platform for multi-dimensional, multi-fidelity analysis, enabling a
system designer to exercise various architectural design options for
confidentiality and data integrity prior to system realization.
by Dr. Jörgen Hansson, Dr. Peter H. Feiler, and John Morley

Practical Defense In Depth
With new classes of attacks and design and coding vulnerabilities,
systems need stronger protection. This article shows how defense in depth
mechanisms have been effective in slowing and stopping attacks.
by Michael Howard

Supporting Safe Content-Inspection of Web Traffic
From Facebook to personal finance, more and more interactions are
becoming Web-based. The concept of a personal proxy has the potential
to fill an important and emerging gap in the current Web-based systems
architecture, and this article explores an early prototype.
by Dr. Partha Pal and Michael Atighetchi

Enhancing the Development Life Cycle to Produce Secure
Software
This article explores recent reports on security in the software development
life cycle, and shows how enhancing practices with the objective of
improving software quality, reliability, and fault-tolerance results in software
that is higher in quality, more reliable, and more tolerant of faults.
by Karen Mercedes Goertzel

Hazardous Software Development
This article explores past safety-critical systems failures in hazardous
situations – the Union Carbide accident in Bhopal, the Patriot Missile
Defense System failure, the Iran Air Flight 655 shoot-down, and Therac-25
system malfunctions – and how methods such as closed-loop corrective
actions can help prevent future problems.
by Corey P. Cunha

Application Application SecuritySecurity

BestBest PracticesPractices

3
9

22
30
31

D eD e p ap a rr t m e n t st m e n t s

From the Publisher

Web Sites

Coming Events

SSTC 2009 Ad

BackTalk

CrossTalk
CO-SPONSORS:

DOD-CIO

OSD (AT&L)

NAVAIR

76 SMXG

309 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

PUBLISHING COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Kristen Baldwin

Jeff Schwalb

Daniel Goddard

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); the
Office of the Secretary of Defense (OSD) Acquisition,
Technology and Logistics (AT&L); U.S. Navy (USN);
U.S. Air Force (USAF); and the U.S. Department of
Homeland Security (DHS). DoD-CIO co-sponsor:
Assistant Secretary of Defense (Networks and
Information Integration). OSD (AT&L) co-sponsor:
Software Engineering and System Assurance. USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); and
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 18.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole reponsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

September 2008 www.stsc.hill.af.mil 3

From the Publisher

Somany of an organization’s business practices are now pushed to the Web. In-house
and external applications are extending secure data and proprietary information out

into a pool of expanded users in order to satisfy business needs. The dangers of this
practice include other pool dwellers that might be malicious in nature, seeking to exploit
what so many software professionals and system users hold dear – information.
The nature of this issue’s focus,Application Security, reminds me of the story of Dame

Ellen MacArthur, who completed the fastest solo non-stop circumnavigation of the
globe in less than 72 days. MacArthur courageously sailed dangerous waters, surrounded by ice-
bergs, massive swells, and sea-dwelling predators similar to the shark on this month’s cover (but
without the protective capabilities of the porcupine fish). Like MacArthur in her sailboat, mak-
ing her way through a treacherous sea, precious organizational information flows through appli-
cation software out to a community of users, vendors, and customers, with malicious hackers
always present. This is risky business indeed.

Joe Jarzombek, Director for Software Assurance for the National Cyber Security Division of
the Department of Homeland Security (DHS), while addressing an Advanced Software
Acquisition Management class at the Defense Acquisition University, held up a copy of the June
2008 issue of CrossTalk on Software Quality as a useful source and said, “Rather than
attempt to break or defeat network or systems security, hackers are opting to target application
software to circumvent security controls.” The numbers bear that out as Jarzombek noted that
Gartner, Inc., an information technology research and advisory company, found that 90 percent
of software attacks were aimed at the application layer. Jarzombek also believes that “most
exploitable software vulnerabilities are attributable to non-secure coding practices and not iden-
tified in testing.” He asserted, “Functional correctness must be exhibited even when software is
subjected to abnormal and hostile conditions.”

So what is a software professional to do? This month’s articles provide an application secu-
rity lifeline. The lead article, Securing Legacy C Applications Using Dynamic Data Flow Analysis by
Steve Cook, Dr. Calvin Lin, and Walter Chang offers solutions in securing existing code within
applications. Building Secure Systems Using Model-Based Engineering and Architectural Models by Dr.
Jörgen Hansson, Dr. Peter H. Feiler, and John Morley, and Practical Defense in Depth by Michael
Howard offer structural support to anyone looking to bolster their security practices on future
designs. Likewise, Karen Mercedes Goertzel’s article, Enhancing the Software Development Life Cycle
[SDLC] to Produce Secure Software, shares the DHS Software Assurance Program’s perspective of
what makes software secure, while leaving specific SDLC security-development up to the read-
er. In Supporting Safe Content-Inspection of Web Traffic, Dr. Partha Pal and Michael Atighetchi show
how Hypertext Transfer Protocol Secure (HTTPS) proxies enable safe interception and inspec-
tion of HTTPS traffic, while Corey P. Cunha’s article Hazardous Software Development explores
past safety-critical systems failures and modern software solutions. And finally, this issue’s co-
sponsor, the DHS Software Assurance Program, offers many free resources for Application
Security – just follow the link on the back cover.

So, to all those charged with the difficult duty of securing your organizations applications,
remember the promising success of Dame Ellen MacArthur. She, just like you, set sail into dan-
gerous waters, yet she arrived safely and without a single scratch. To all our CrossTalk read-
ers: I hope this issue helps in navigating through the sea of threats and leads to smooth sailing
in all of your security efforts.

Smooth Sailing for Application Security

Kasey Thompson
Publisher

4 CROSSTALK The Journal of Defense Software Engineering September 2008

Most attacks on networks and infor-
mation systems begin by exploiting

a vulnerability in a software application
that is resident on a host computer, serv-
er, or even an appliance designed to pro-
vide network defense. Addressing these
vulnerabilities is currently very labor-
intensive, requiring constant updates and
patches. All of us have become accus-
tomed to receiving software security
updates on an almost daily basis for many
of our commonly used applications.
Terms such as denial of service, phishing,
botnets, and spamming are all becoming
part of our everyday vernacular, and our
collective concern.

Current technological and educational
efforts seek to ensure the security of
future applications. Most approaches to
resolving today’s security concerns focus
on single-point solutions. Furthermore,
millions of lines of existing software that
comprise our legacy systems must be
secured to defend those information sys-
tems on which our national infrastructure
depends. Unfortunately, today’s software
engineers are not typically trained in the
development of secure software systems.
Implementation of application security
requires that the programmer be an

expert not only in the application
domain, but also in secure coding prac-
tices. Our universities are beginning to
add security to the software educational
curriculum so that new graduates can dis-
tinguish good practices from bad as they
translate software designs into source
code. The Department of Homeland
Security has created a publicly available
Web site to capture best practices in
developing secure software at <https://
buildsecurityin.us-cert.gov>. However,
even when a programmer is trained in
best practices for secure programming, it
is unrealistic to depend upon the pro-
grammer to develop code that is absent
of vulnerabilities.

To supplant the ad-hoc security
enhancing efforts of today and meet the
challenges of tomorrow, an automated
method is needed to identify and guard
against runtime exploits while remaining
flexible and agile as security policies
change and evolve. In this article, we
present research work in progress to
develop a system that ensures that C
programs enforce a wide variety of user-
defined security policies with a mini-
mum of runtime overhead and disrup-
tion to development processes. In the

future, our system can be extended to
handle multiple languages and comple-
ment new security solutions.

What Is Dynamic Data Flow
Analysis (DDFA)?
DDFA is an extensible, compiler-based
system that automatically instruments the
source code of arbitrary (meaning without
any assumptions on the code) C programs
to enforce a user-specified security policy.
The system does not require any modifi-
cation to the original source code by the
developer and also does not significantly
degrade a program’s runtime perfor-
mance. Moreover, it has the ability to
simultaneously enforce many different
classes of security vulnerabilities.

The DDFA system is built upon the
Broadway static data flow analysis and
error checking system, which is a source-
to-source translator for C developed by
the computer sciences department at the
University of Texas at Austin (UT-Austin)
[1]. UT-Austin and the Southwest Re-
search Institute (SwRI) are collaborating
to enhance the Broadway specification
language and analysis infrastructure with a
dependence analysis, an instrumentation

Securing Legacy C Applications Using
Dynamic Data Flow Analysis

Dr. Calvin Lin and Walter Chang
University of Texas at Austin

Most attacks on networks and information systems consist of exploits of software vulnerabilities. Even safe programming
languages are not immune to problems such as Structured Query Language (SQL) injection, cross-site scripting, or other
information flow-related vulnerabilities. While current technological and educational efforts seek to ensure the security of
future applications, millions of lines of existing software must be secured as we work to defend our national infrastructure.
What is needed is an automatic and scalable method that identifies and traps runtime exploits and that can update existing
software as security policies evolve. This article presents ongoing research on an approach to securing legacy C applications,
while remaining applicable to future problems and languages.

Steve Cook
Southwest Research Institute

Application Security

Broadway Compiler
C

Program
Security

Enhances
C Program

Security
Policy

Specification

Static
Analysis

Instrumentation
Engine

DDFA Runtime
Library

Figure 1: Overall Architecture of DDFA System

Securing Legacy C Applications Using Dynamic Data Flow Analysis

September 2008 www.stsc.hill.af.mil 5

engine, and a dynamic data flow library.
Figure 1 shows the overall architecture

of the DDFA system. Input to the
Broadway compiler consists of the source
code of an untrusted program and a secu-
rity policy specification file. The output is
an enhanced version of the original source
code that has been automatically instru-
mented with DDFA runtime library calls.
The modified program is then compiled
for the platform of choice so that its secu-
rity policy can be enforced at runtime
using DDFA. The system does not require
hardware or operating system changes.

The primary design goals are the fol-
lowing:
1. Minimize the required developer

involvement.
2. Minimize runtime overhead of the

secured program.
3. Provide sufficient generality for multi-

level security support and enough
extensibility for future capabilities.
Minimizing developer involvement is

achieved through a security policy speci-
fication file that is independent of the
program. A security policy is defined
once by a security expert using a simple
language, which has a direct mapping to
the application programming interface to
which the program is written. The policy,
once defined, can be applied to many dif-
ferent programs. The DDFA approach is
easily integrated into the development
workflow, adding only an additional
compilation step before application
deployment.

To minimize the runtime overhead of
an executing program, the DDFA
approach builds on the body of research
in static analysis and leverages semantic
information provided by the security pol-
icy to enable optimizations beyond stan-
dard compiler techniques. This results in
a program that is instrumented with addi-
tional code only where provably necessary,
so innocuous flows of data are not
tracked at runtime, thus keeping runtime
overhead low.

For sufficient generality and extensi-
bility in security exploits, a DDFA
approach is used instead of a more tradi-
tional dynamic taint analysis [2, 3, 4].
Taint analysis tracks the flow of tainted
data (i.e., data originating from the
potential attacker) through the system at
runtime and then checks that the tainted
data is not misused. Our approach
expands on the generality of taint track-
ing by recognizing that taint tracking is a
special case of data flow tracking
(DDFA). Whereas taint analysis typically
tracks one bit of information, data flow
analysis can track multiple bits of infor-

mation and can combine the information
in more flexible ways than taint analysis.
This allows our approach to support
multi-level security and provide a higher
level of generality that could be used for
other unanticipated security challenges in
the future.

Table 1 identifies exploits that can
and cannot be handled by taint-based sys-
tems. Since the DDFA approach sup-

ports general data flow tracking, it can
handle all of these exploits, and can do so
simultaneously. Such generality will
become particularly important as devel-
opers move to memory-safe languages
such as Java and C#, where the use of
taint tracking to enforce secure control
flow is not as important. Security vulner-
abilities that are not currently addressed
by the DDFA approach include those
such as covert timing channel vulnerabil-
ities, since they are outside the scope of
data flow analysis [5].

How Does DDFA Work?
In this section, we will discuss in more
detail the components of the DDFA sys-

tem and how they work. The components
include the following: the policy specification,
static data flow analysis, instrumentation engine,
and DDFA.

Policy Specification
The policy specification is defined using
the Broadway specification language [1,
6]. It is a simple declarative language that
is used to tell the compiler how to per-
form specific data flow analysis by sup-
plying rules. The two high-level items to
specify are the lattice definition and the
summaries for the library functions and
system calls.

A lattice must be defined for each type
of analysis to be performed. For example,
in a format string attack, taint analysis can
be used. A lattice called Taint would be
defined with two flow values which could
be named Tainted and Untainted. Further-
more, Untainted is placed higher than
Tainted to signify that when the two flow
values are combined on a particular object
being tracked, the result is the lower of the
two, Tainted. Lattices naturally model hier-
archical security levels and are ideal for
reasoning about multilevel security and
access control that go beyond taint track-
ing, such as role-based access control
(RBAC) [7].

Summaries for the library functions
and system calls define how the lattice
flow values are introduced into the sys-
tem, how the flow values propagate
through the system, and how to track
unsafe use of the lattice flow values.
Continuing our format string attack exam-
ple, the following specification declares
that data introduced into the system
through the network library call recv()
would always be tainted:

procedure recv(s, buf, len, flags)
{
on_entry { buf gg buffer }
analyze Taint { buffer ff Tainted }

}

Here, the on_entry keyword describes func-
tion parameters relevant to the analysis

Traditional Tainted Data Attacks
Security Problems Taint Tracking

Cannot Handle

Format String Attacks File Disclosure Vulnerabilities

SQL Injection Labeled Security Enforcement

Command Injection Role-Based Access Control

Cross-Site Scripting Mandatory Access Control

Privilege Escalation Accountable Information Flow

Program Original DDFA Runtime Overhead

p 3.07 seconds (s) 3.19 s 3.78 %

muh 11.23 milliseconds (ms) 11.23 ms 0.0 %

wu- 2.745 megabytes per second (MB/s) 2.742 MB/s < 1 %

bind 3.580 ms 3.566 ms < 1%

apache 6.062 MB/s 6.062 MB/s < 1%

Average Overhead: 0.65 %

Program Runtime Overhead

gzip 51.35 %

vpr < 1 %

mcf < 1%

crafty < 1%

Average: 12.9 %

Program Code Overhead

pfingerd 49,655 49,655 0.0 %

muh 59,880 60,488 1.01 %

wu-ftpd 205,487 207,997 1.22 %

bind 215,669 219,765 1.90 %

apache 552,114 554,514 0.43 %

Average Overhead: 0.91 %

Broadway Compiler
C

Program
Security

Enhances
C Program

Security
Policy

Specification

Static
Analysis

Instrumentation
Engine

DDFA Runtime
Library

Original
(bytes)

DDFA
(bytes)

pfingerd

wu-ftpd

Table 1: Vulnerabilities That Taint Tracking Can and Cannot Handle

“To supplant the ad-hoc
security-enhancing efforts
of today and meet the
challenges of tomorrow,
an automated method is
needed to identify and
guard against runtime

exploits while remaining
flexible and agile as

security policies change
and evolve.”

Application Security

6 CROSSTALK The Journal of Defense Software Engineering September 2008

and gives a name, buffer, to the object
pointed to by buf. The analyze keyword
describes the effect of the function on lat-
tice flow values.

To allow the compiler to reason about
the propagation of tainted data, the fol-
lowing specification of the library system
call strdup() declares that it returns a point-
er to string_copy and that string_copy should
have whatever taintedness that string has:

procedure strdup(s)
{
on_entry { s gg string }
on_exit { return gg string_copy }
analyze Taint { string_copy ff string }
}

Finally, to track the unsafe use of tainted
data, an error handler would be specified
as follows in the summary for a library call
such as printf() (an ultimate perpetrator in a
format string attack) when unsafe data is
actually used:

procedure printf(format, args)
{
on_entry { format gg format_string }
error_if (Taint : format_string could-be

Tainted)
fsv_error_handler();

}

Here, the error keyword signals to the com-
piler that special action is required when
the condition is met.

Unlike most taint tracking systems, the
security policy (lattice and summary decla-
rations) and underlying analysis is not
hard-coded into the compiler or runtime
system. Instead, this semantic information
for the analysis is provided in a separate
specification file. This separation allows
the system to remain general and flexible
enough to enforce a wide variety of secu-
rity policies.

Some insight into the generality and
flexibility of the DDFA system can be
demonstrated by how it guards against file
disclosure attacks which cannot be handled
with traditional taint tracking systems. For
the analysis, two lattices must be defined
as follows to track the origin of data and
its trustedness:

property Kind : { File, Filesystem, Client,
Server, Pipe, Command,
StandardIO,
Environment,
SystemInfo, NameServer
}

property Trust : {Remote, External,
Internal }

For a true file disclosure problem, only
File is used, but this definition could be
reused for other policies that need to dis-
tinguish between other sources. For the
sake of brevity, summaries for how lattice
flow values are introduced into the system
and how those flow values are propagated
will not be shown here, as it is somewhat
similar to the previous format string attack
example. The following specification
defines a violation of the policy where File
data from a file with Remote trustedness is
sent to a server socket with Remote trust
(indicating that it was initiated by a remote
user):

procedure write(fd, buf_ptr, size)
{
on_entry { fd gg IOHandle, buf_ptr gg

buffer }
error if ((Trust : buffer could-be Remote
&& Kind : buffer could-be File) &&
(Trust : IOHandle could-be Remote
&& Kind : IOHandle could-be Server))

file_disclosure_error_handler()
}

Static Data Flow Analysis
To avoid the cost of tracking all objects at
runtime, the DDFA system performs
inter-procedural data flow analysis that
identifies all program locations where pol-
icy violations might occur. A subsequent
inter-procedural analysis identifies all pro-
gram statements that affect the lattice flow
value of objects that may trigger a policy
violation. Both of these compiler passes
are supported by a fast and precise point-
er analysis for potentially aliased data.

The first pass statically identifies all
possible violations of the security policy.
If the analysis can prove that there are no
such vulnerabilities in the program, no
further analysis or instrumentation is
needed. When analysis determines that a
vulnerability exists or cannot determine if
a vulnerability is genuine, additional analy-
sis is needed to determine where instru-
mentation is required.

The second pass is an inter-procedural
dependence analysis that identifies all the
statements in the program that affect the
flow value of objects that may trigger a
security violation. This pass provides a list
of statements to the instrumentation
engine to be inserted into the original
source code so that dynamic data flow
analysis can be performed at runtime.

Pointer analysis is necessary for mem-
ory-unsafe languages like C and C++
because objects could have many different
pointers pointing to them, making it trick-
ier to reason precisely about the flow of
data. The limited scalability of pointer

analysis has stymied previous attempts to
apply inter-procedural analysis to dynamic
taint tracking [8]. However, the DDFA
system makes use of a highly scalable and
accurate client-driven pointer analysis that
leverages the semantic information pro-
vided by the security policy to dramatical-
ly reduce the amount of code that needs
to be instrumented [9, 10].

Instrumentation Engine
The instrumentation engine uses the
results from static data flow analysis to
determine where in the program addi-
tional code must be inserted to support
the DDFA at runtime. The instrumenta-
tion engine also uses the semantics of the
security policy specification to determine
which particular calls from the DDFA
runtime library will be inserted into the
program. Continuing our format string
attack example, the following C code
snippet shows how the network library
call recv() would be instrumented if static
analysis determines that it may introduce
suspect data into the system:

recv(sock_fd, recv_msg, 10, 0);
ddfa_insert(DDFA_LTAINT, recv_msg,

strlen(recv_msg),DDFA_
LTAINT_TAINTED);

The ddfa_insert() call sets the memory
region occupied by the string object
recv_msg as TAINTED. Any attempt to
copy the data occupied by this object to
another memory region or to use this data
in an unsafe manner would pass the flow
value tainted to the copied object or trig-
ger the error handler respectively. To sup-
port propagation of tainted data, the fol-
lowing code snippet shows how the library
call strdup() would be instrumented:

copy_msg = strdup(recv_msg);
ddfa_copy_flowval(DDFA_LTAINT,
copy_msg, recv_msg, strlen(copy_msg));

Finally, the following code snippet shows
how the library call printf() would be
instrumented to conditionally invoke an
error handler before unsafe use of tainted
data occurs:

if (ddfa_check_flowval(DDFA_LTAINT,
copy_msg, DDFA_LTAINT_TAINTED))
{fsv_error_handler();}

printf(copy_msg);

This example illustrates how the
DDFA approach can go much further
than simply detecting vulnerabilities, as
with purely static approaches, by allowing
the original program to execute securely

Securing Legacy C Applications Using Dynamic Data Flow Analysis

September 2008 www.stsc.hill.af.mil 7

even if the programmer does not fix the
underlying problem. Additionally, the flow
of the original program is not affected
unless a potential unsafe use of tainted
data is detected.

DDFA
The DDFA is supported by the data flow
analysis at runtime library and, for each
type of analysis, tracks the lattice flow val-
ues for all objects identified by the static
analysis as potentially unsafe. As the pro-
gram executes, our system tracks object
flow values at the byte level, which pro-
vides fine-grained tracking that is neces-
sary in memory unsafe languages such as
C. If an unsafe use of an object occurs,
the error handler specified in the security
policy will be invoked before the object is
actually used in an unsafe manner. The
primary benefit of performing data flow
analysis at runtime is to subvert a security
attack by invoking the appropriate error
handler specified in the security policy
before an unsafe use of an object occurs.

Effectiveness of the DDFA
Approach
In this section we will address, in both
objective and subjective terms, the effec-
tiveness of the DDFA approach.

Minimizing Impact on Development
Processes
One of the most important benefits in
using the DDFA system is that it works
on existing C programs and does not
require the developer to make any
changes to the original source code. The
developer need only recompile their pro-
gram with the DDFA system to create a
security-enhanced version of their origi-
nal source code. If not using one of the
default policy specifications provided by
our system, such as taint tracking or file dis-
closure vulnerability, a security expert can
extend the system by creating a new pol-
icy specification file. In contrast, to
extend a conventional taint tracking sys-
tem to something other than taint track-
ing, core components of the compiler
infrastructure would have to be rewrit-
ten. In the DDFA system, the only
change is in the policy specification file
itself. This also allows new security poli-
cies to be developed quickly in response
to new attacks, resulting in a more agile
response to the ever-changing security
environment.

Although the DDFA approach cur-
rently requires the source code of the
application as input to the system instead
of the binary executable, it does not

require the implementation source code
of the library functions and system calls
that appear as summaries in the policy
specification file. Only an understanding
of the behavior of the function calls is
required. Moreover, the work described
in this article is part of an ongoing
research program, which has as a longer-
term goal of applying the DDFA
approach to binary executables. This

could be an evolutionary step in the
research, since the DDFA system already
performs its analysis on a low-level repre-
sentation of the input program.
However, there are challenges in moving
to binary because significant information
that is leveraged in minimizing the per-
formance impacts of security insertion is
lost in the compilation process.

Another related aspect of our system
is that the security enforcement is added
to the program after it has been devel-
oped. This opens up many new software
engineering possibilities such as code
separation. In-house software will be
more maintainable and agile because it is
unfettered by security concerns. Likewise,
commercial off-the-shelf and open
source software can be brought into a
highly trusted environment and then
automatically made more secure. It also
allows an organization to keep their secu-

rity policy specification private when sub-
contracting software development to out-
side organizations.

Minimizing Performance Overhead
Another important benefit is that the
DDFA approach takes advantage of the
fact that only a very small portion of a
program is actually involved in any given
security attack [11]. Identifying this small
portion of the program, however, requires
sophisticated static analysis. Without this
analysis, large portions of the program
would have to be instrumented, substan-
tially increasing the program’s runtime
overhead.

In order to quantify the runtime
overhead that is incurred on programs
enhanced by the DDFA system, we mea-
sured the runtime overhead for two dif-
ferent sets of open-source C programs. In
the first set, we measured response time
or throughput for several different serv-
er type programs with considerable
input/output. We took measurements
against the original program and then
again after instrumentation by the
DDFA system (in this case, applying a
taint-based policy specification). As
shown in Table 2, our solution has an
average overhead of 0.65 percent. The
current fastest compiler-based and
dynamically optimized systems report
server application overhead of 3-7 per-
cent, and 6 percent, respectively [12, 13].

In the second test set, we measured
Standard Performance Evaluation
Corporation (SPEC) workloads of four
SPECint 2000 benchmarks that are
compute-bound applications after per-
forming a format string vulnerability
analysis. In each case, our static analysis
determines that the programs contain
no such vulnerability, as expected. Thus,
the true overhead for these examples is
zero percent. In order to understand the
impact of our system on compute-
bound programs that do contain vulner-
abilities, we manually inserted a vulnera-
bility into each of the benchmarks. As
can be seen in Table 3 (see next page),
the average runtime overhead is less

Traditional Tainted Data Attacks
Security Problems Taint Tracking

Cannot Handle

Format String Attacks File Disclosure Vulnerabilities

SQL Injection Labeled Security Enforcement

Command Injection Role-Based Access Control

Cross-Site Scripting Mandatory Access Control

Privilege Escalation Accountable Information Flow

Program Original DDFA Runtime Overhead

p 3.07 seconds (s) 3.19 s 3.78 %

muh 11.23 milliseconds (ms) 11.23 ms 0.0 %

wu- 2.745 megabytes per second (MB/s) 2.742 MB/s < 1 %

bind 3.580 ms 3.566 ms < 1%

apache 6.062 MB/s 6.062 MB/s < 1%

Average Overhead: 0.65 %

Program Runtime Overhead

gzip 51.35 %

vpr < 1 %

mcf < 1%

crafty < 1%

Average: 12.9 %

Program Code Overhead

pfingerd 49,655 49,655 0.0 %

muh 59,880 60,488 1.01 %

wu-ftpd 205,487 207,997 1.22 %

bind 215,669 219,765 1.90 %

apache 552,114 554,514 0.43 %

Average Overhead: 0.91 %

Broadway Compiler
C

Program
Security

Enhances
C Program

Security
Policy

Specification

Static
Analysis

Instrumentation
Engine

DDFA Runtime
Library

Original
(bytes)

DDFA
(bytes)

pfingerd

wu-ftpd

Table 2: Runtime Overhead for Server Programs Performing Taint Analysis

“One of the most
important benefits in

using the DDFA system
is that it works on

existing C programs and
does not require the

developer to make any
changes to the

original source code.”

Application Security

8 CROSSTALK The Journal of Defense Software Engineering September 2008

than 13 percent, which is significantly
better than the best previously reported
averages of 75-260 percent [12, 13].

Minimizing Code Expansion
Because our system adds instrumentation
to the source program, it expands the pro-
grams static code size. To quantify this
property, we measured code expansion by
comparing the sizes of the original and
modified binary executables after per-
forming taint tracking on the server pro-
grams mentioned previously. As can be
seen in Table 4, the average expansion is
less than 1 percent. Compiler-based sys-
tems such as the GNU Image-Finding
Tool report 30-60 percent increases in
binary size [8].

Related Capabilities and Future
Directions
Finally, another important benefit of the
DDFA system is that the technology is
applicable to future threats and other
areas that are not specific to security. For
example, systems that depend on seman-
tic information such as information flow
(i.e., privacy concerns) or access controls
can be enhanced by our system without
modifying the core infrastructure. We
recently demonstrated this generality by
showing that the policy specification file
can be used to define roles in a RBAC
system, and then subsequently applied to
a set of software that previously did not
have RBAC. The DDFA system can go
beyond problems such as buffer over-

flows and overwrite attacks that continue
to plague legacy languages and solve
problems affecting even safer languages
such as Java and C#. These languages are
not immune to attacks like SQL injection
and cross-site scripting that depend on
semantic, not language-level, errors in
data handling. DDFA, along with the
semantic information captured by the
policy specification, can address these
types of problems.

Our challenge, therefore, is to devel-
op solutions that can both be applied to
existing legacy software today for imme-
diate benefits while also looking forward
to the more sophisticated challenges that
face us in the future. We believe that the
DDFA system is well positioned to pro-
vide a practical approach to enhancing
the security of legacy software in the near
future. We are also continuing our
research in increasing the scalability of
pointer analysis, integrating language-
independence into the DDFA technolo-
gy, as well as researching and testing the
breadth of applicability of the approach
itself.u

Acknowledgements
This work is funded in part by the
Intelligence Advanced Research Projects
Activity National Intelligence Community
Enterprise Cyber Assurance Program.
Additionally, the authors would like to
acknowledge the following staff who
form part of this research team: Ben
Hardekopf and Brandon Streiff (of UT-
Austin); Mark Brooks, Nakul Jeirath, Arif
Kasim, Ronnie Killough, Jeremy Price,
and Galen Rasche (all of the SwRI).

References
1. Guyer, S.Z. “Incorporating Domain-

Specific Information into the
Compilation Process.” Diss., The
University of Texas at Austin, Austin,
TX, 2003.

2. Newsome, J., and D. Song. Dynamic
Taint Analysis for Automation Detec-
tion, Analysis, and Signature Genera-
tion of Exploits on Commodity Soft-

ware. Proc. of Network and Distri-
buted Security Symposium, San Diego,
CA, 2005.

3. Nguyen-Tong, A., et al. Automatically
Hardening Web Applications Using
Precise Tainting. Proc. of 20th IFIP
International Information Security
Conference, 2005.

4. Chen, S., J. Xu, N. Nakka, Z.
Kalbarczyk, and R.K. Iyer. Defeating
Memory Corruption Attacks Via
Pointer Taintedness Detection. Proc.
of International Conference on
Dependable Systems and Networks,
2005: 378-387.

5. Cabuk S., C. Brodley, and C. Shields.
IPCovert Timing Channels: Design
and Detection. Proc. of the 11th ACM
Conference on Computer and
Communications Security, 2004: 178-
187.

6. Guyer, S.Z., and C. Lin. An Anno-
tation Language for Optimizing Soft-
ware Libraries. Proc. of the 2nd
Conference on Domain-Specific Lan-
guages, 1999: 39-52.

7. Denning, D. “A Lattice Model of
Secure Information Flow.” Communi-
cations of the ACM 19.5 (1976): 236-
243.

8. Lam, L.C., and T.C. Chiueh. A General
Dynamic Information Flow Tracking
Framework for Security Applications.
Proc. of the 22nd Annual Computer
Security Applications Conference,
2006.

9. Strom, R., and S. Yemini. “Typestate:
A Programming Language Concept
for Enhancing Software Reliability.”
IEEE Transactions on Software
Engineering 12.1 (1986): 157-171.

10. Guyer, S.Z., and C. Lin. Client-Driven
Pointer Analysis. Proc. of the 10th
Annual Static Analysis Symposium,
June 2003.

11. Newsome, J., D. Brumley, and D. Song.
Vulnerability-Specific Execution Fil-
tering for Exploit Prevention on Com-
modity Software. Proc. of the Net-
work and Distributed Security Sym-
posium, 2006.

12. Xu, W., S. Bhatkar, and R. Sekar. Taint-
Enhanced Policy Enforcement: A
Practical Approach to Defeat a Wide
Range of Attacks. Proc. of the 15th
USENIX Security Symposium, 2006.

13. Qin, F., C. Wang, Z. Li, H. Seop Kim,
Y. Zhou, and Y. Wu. LIFT: A Low-
Overhead Information Flow Tracking
System for Detecting Security Attacks.
Proc. from the 39th Annual IEEE/
ACM Symposium on Microarchitec-
ture, 2006: 135-148.

Traditional Tainted Data Attacks
Security Problems Taint Tracking

Cannot Handle

Format String Attacks File Disclosure Vulnerabilities

SQL Injection Labeled Security Enforcement

Command Injection Role-Based Access Control

Cross-Site Scripting Mandatory Access Control

Privilege Escalation Accountable Information Flow

Program Original DDFA Runtime Overhead

p 3.07 seconds (s) 3.19 s 3.78 %

muh 11.23 milliseconds (ms) 11.23 ms 0.0 %

wu- 2.745 megabytes per second (MB/s) 2.742 MB/s < 1 %

bind 3.580 ms 3.566 ms < 1%

apache 6.062 MB/s 6.062 MB/s < 1%

Average Overhead: 0.65 %

Program Runtime Overhead

gzip 51.35 %

vpr < 1 %

mcf < 1%

crafty < 1%

Average: 12.9 %

Program Code Overhead

pfingerd 49,655 49,655 0.0 %

muh 59,880 60,488 1.01 %

wu-ftpd 205,487 207,997 1.22 %

bind 215,669 219,765 1.90 %

apache 552,114 554,514 0.43 %

Average Overhead: 0.91 %

Broadway Compiler
C

Program
Security

Enhances
C Program

Security
Policy

Specification

Static
Analysis

Instrumentation
Engine

DDFA Runtime
Library

Original
(bytes)

DDFA
(bytes)

pfingerd

wu-ftpd

Table 4: Static Code Expansion After Performing Taint Tracking

Traditional Tainted Data Attacks
Security Problems Taint Tracking

Cannot Handle

Format String Attacks File Disclosure Vulnerabilities

SQL Injection Labeled Security Enforcement

Command Injection Role-Based Access Control

Cross-Site Scripting Mandatory Access Control

Privilege Escalation Accountable Information Flow

Program Original DDFA Runtime Overhead

p 3.07 seconds (s) 3.19 s 3.78 %

muh 11.23 milliseconds (ms) 11.23 ms 0.0 %

wu- 2.745 megabytes per second (MB/s) 2.742 MB/s < 1 %

bind 3.580 ms 3.566 ms < 1%

apache 6.062 MB/s 6.062 MB/s < 1%

Average Overhead: 0.65 %

Program Runtime Overhead

gzip 51.35 %

vpr < 1 %

mcf < 1%

crafty < 1%

Average: 12.9 %

Program Code Overhead

pfingerd 49,655 49,655 0.0 %

muh 59,880 60,488 1.01 %

wu-ftpd 205,487 207,997 1.22 %

bind 215,669 219,765 1.90 %

apache 552,114 554,514 0.43 %

Average Overhead: 0.91 %

Broadway Compiler
C

Program
Security

Enhances
C Program

Security
Policy

Specification

Static
Analysis

Instrumentation
Engine

DDFA Runtime
Library

Original
(bytes)

DDFA
(bytes)

pfingerd

wu-ftpd

Table 3: Runtime Overhead for Compute-
Bound Programs Performing Format String
Vulnerability

Securing Legacy C Applications Using Dynamic Data Flow Analysis

September 2008 www.stsc.hill.af.mil 9

About the Authors

Steve Cook is a senior
research analyst in the
System Security and
High Reliability Software
section at the SwRI. His
background and exper-

tise are in parallel and real-time comput-
ing, compilers, as well as object-oriented
and generic programming. Cook
received his master’s degree in computer
science from Texas A&M University.
While at Texas A&M, he worked as a
research assistant for Dr. Bjarne
Stroustrup, creator of the C++ Pro-
gramming Language, where he helped
develop a new approach to writing con-
current programs free from race condi-
tions and deadlock.

SwRI
System Security and
High Reliability Software
P.O. Drawer 28510
San Antonio,TX 78228-0510
Phone: (210) 522-6322
E-mail: steve.cook@swri.org

Calvin Lin, Ph.D., is an
associate professor of
computer sciences at
UT-Austin and director
of their Turing Scholars
Honors Program. His

research takes a broad view at how lan-
guages, compilers, and microarchitecture
can improve system performance and
programmer productivity. Lin leads the
development of the Broadway compiler,
which exploits domain-specific informa-
tion in the compilation process. He
holds a doctorate in computer science
from the University of Washington.

Department of Computer Sciences
UT-Austin
1 University Station C0500
Austin,TX 78712-1188
Phone: (512) 471-9560
E-mail: lin@cs.utexas.edu

Walter Chang received
his bachelor’s degree in
computer science from
Cornell University and is
currently a doctoral stu-
dent in the Department

of Computer Sciences at UT-Austin,
where his research develops program
analyses to improve various aspects of
software quality, including software secu-
rity and software correctness.

Department of Computer Sciences
UT-Austin
1 University Station C0500
Austin,TX 78712-1188
Phone: (512) 232-7434
E-mail: walter@cs.utexas.edu

Department of Homeland Security’s
(DHS) Software Assurance Program
www.us-cert.gov/swa
The DHS Software Assurance Program spearheads the develop-
ment of practical guidance and tools and promotes research and
development of secure software engineering, examining a range
of development issues from new methods that avoid basic pro-
gramming errors to enterprise systems that remain secure when
portions of the system software are compromised. Through col-
laborative software assurance efforts, stakeholders seek to reduce
software vulnerabilities, minimize exploitation, and address
ways to improve the routine development and deployment of
trustworthy software products.

The Open Web Application Security
Project (OWASP)
www.owasp.org
The OWASP is a worldwide free and open community focused
on improving the security of application software. Their mis-
sion is to make application security “visible” so that people and
organizations can make informed decisions about application
security risks.

SecurityFocus
www.securityfocus.com
SecurityFocus provides the most comprehensive and trusted
source of computer and application security information on the
Internet. It provides objective, timely, and comprehensive secu-

rity information to all members of the security community.
Information includes computer security vulnerability
announcements, security-related news stories and feature arti-
cles, effective security measure implementation ideas, and a high
volume, full-disclosure mailing list for detailed discussions.

MILS: High-Assurance Security at
Affordable Costs
www.cotsjournalonline.com/home/article.php?id=100423&pg=1
This COTS Journal article explores how multiple independent
levels of security (MILS) build high-assurance systems that must
survive high-threat environments. The central idea behind
MILS is to partition a system in such a way that 1) the failure
or corruption of any single partition cannot affect any other
part of the system or network, and 2) each partition can be secu-
rity-evaluated and certified separately.

Build Security In (BSI)
http://buildsecurityin.us-cert.gov
BSI contains and links to best practices, tools, guidelines, rules,
principles, and other resources that software developers, archi-
tects, and security practitioners can use to build security into
software in every phase of its development. BSI content is based
on the principle that software security is fundamentally a soft-
ware engineering problem and must be addressed in a systemat-
ic way throughout the software development life cycle.

WEB SITES

10 CROSSTALK The Journal of Defense Software Engineering September 2008

System designers face several challenges
when specifying security for distrib-

uted computing environments or migrat-
ing systems to a new execution platform.
Business stakeholders impose constraints
due to cost, time-to-market requirements,
productivity impact, customer satisfaction
concerns, and so forth. Thus, a system
designer needs to understand require-
ments regarding the confidentiality and
integrity of protected resources (e.g.,
data). Additionally, a designer needs to
predict the effect that security measures
will have on other runtime quality attrib-
utes such as resource consumption, avail-
ability, and real-time performance. After
all, the resource costs associated with
security can easily overload a system.
Nevertheless, security is often studied only
in isolation and late in the process.
Furthermore, the unanticipated effects of
design approaches or changes are discov-

ered only late in the life cycle when they
are much more expensive to resolve1.

MBE for Security Analysis
Modeling of system quality attributes,
including security, is often done – when it
is done – with low-fidelity software mod-
els and disjointed architectural specifica-
tions by various engineers using their own
specialized notations. These models are
typically not maintained or documented
throughout the life cycle, making it diffi-
cult to obtain a system view. However, a
single-source architecture model of the
system that is annotated with analysis-spe-
cific information allows changes to the
architecture to be reflected in the various
analysis models with little effort; those
models can easily be regenerated from the
architecture model (Figure 1). This
approach also allows the designer to con-
duct an adequate trade-off analysis and

evaluate architectural variations prior to
system realization, thereby gaining confi-
dence in the architectural design. Models
also can be used to evaluate the effects of
reconfiguration and system revisions in
post-development phases.

Using MBE tools, the Software
Engineering Institute (SEI) has developed
analytical techniques to:
• Represent standard security protocols

for enforcing confidentiality and
integrity, such as Bell-LaPadula [1, 2],
Chinese wall [3, 4], role-based access
control [5], and the Biba model [6].

• Model and validate security using sys-
tem architecture according to flow-
based approaches early and often in the
life cycle.
The MBE tools that the SEI uses are

the Architecture Analysis and Design
Language (AADL) and the Open Source
AADL Tool Environment (OSATE) set of
analysis plugins [7]2. The AADL is used to
model and document system architecture
and provide the following platform for
analyses:
• Using a single architecture model to

evaluate multiple quality attributes,
including security.

• Early and often during system design or
when upgrading existing system archi-
tecture.

• At different architecture refinement lev-
els as information becomes available.

• Along diverse architectural aspects,
such as behavior and throughput.

Architectural Considerations
Security as an architectural concern
crosscuts all levels of the system (appli-
cation, middleware, operating systems,
and hardware). Thus, security requires
intra- and inter-level validation and has
immediate effects on the runtime behav-
ior of the system, specifically on other
dependability attributes.

Building Secure Systems Using Model-Based
Engineering and Architectural Models

The Department of Defense’s policy of multi-level security (MLS) has long employed the Bell-LaPadula and Biba approach-
es for confidentiality and integrity; more recently, the multiple independent levels of security/safety (MILS) approach has been
proposed. These approaches allow designers of software-intensive systems to specify security levels and requirements for access
to protected data, but they do not enable them to predict runtime behavior. In this article, model-based engineering (MBE)
and architectural modeling are shown to be a platform for multi-dimensional, multi-fidelity analysis that is conducive for use
with Bell-LaPadula, Biba, and MILS approaches, and enables a system designer to exercise various architectural design
options for confidentiality and data integrity prior to system realization. In that way, MBE and architectural modeling can
be efficiently used to validate the security of system architectures and, thus, gain confidence in the system design.

Dr. Jörgen Hansson, Dr. Peter H. Feiler, and John Morley
Software Engineering Institute

ARCHITECTURAL
MODEL

AVAILABILITY
AND RELIABILITY

Mean Time Between Failures (MTBF)
Failure Mode and Effects Analysis (FMEA)
Hazard Analysis

DATA QUALITY

Temporal Correctness
Data Precision/Accuracy
ConfidenceREAL-TIME

PERFORMANCE

Deadlock/Starvation
Latency
Execution Times/Deadlines

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

ARCHITECTURAL
MODEL

AVAILABILITY
AND RELIABILITY

MTBF
FMEA
Hazard Analysis

DATA QUALITY

Temporal Correctness
Data Precision/Accuracy
ConfidenceREAL-TIME

PERFORMANCE

Deadlock/Starvation
Latency
Execution Times/Deadlines

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

Increased confidentiality
requirement

• Change of encryption policy

System 1

Secure
Information

Software
Application

Operating
System

Hardware
Platform

System 2

Secure
Information

Software
Application

Operating
System

Hardware
Platform

Communication Channel

Application is trusted
to deal with protected

resources

Operating System
supports protection
of applications (e.g.,
memory partitioning)

Operating System

runs on a
trusted platform

 Communication is
secured (e.g.,

encryption)

Figure 1: A Single, System Architectural Model Annotated for Multiple Non-Functional Quality
Analyses

Building Secure Systems Using Model-Based Engineering and Architectural Models

September 2008 www.stsc.hill.af.mil 11

The designer needs to enforce intra-
and inter-level security throughout the
architecture. Figure 2 depicts various sys-
tem levels involved in the validation of
security privileges against confidentiality
requirements (it assumes that authentica-
tion and other necessary security services
are enforced). The designer seeks to ensure
that the software applications do not com-
promise the confidentiality of the secure
information they are exchanging. Conse-
quentially, software applications need to
execute on top of a secure operating sys-
tem, be mapped to a protected and secured
hardware memory space, and communicate
over a secure communication channel. If
the data is labeled “confidential,” then
every architectural layer needs to have a
clearance of at least that level.

Additionally, the designer needs to
acknowledge that security comes with a
cost. Encryption, authentication, security,
and protection mechanisms increase band-
width demand in terms of the central pro-
cessing unit (CPU), the network, and mem-
ory. These increases affect the temporal
behavior of the system (worst-case execu-
tion time, response time, schedulability, and
end-to-end latency) as well as power con-
sumption (especially important in battery-
driven or limited lifetime devices such as
sensor networks or portable communica-
tion devices).

As a result, security cannot be consid-
ered in isolation. The system designer
makes choices to trade these quality attrib-
utes against each other (a particular concern
for embedded and real-time systems, which
operate under significant resource con-
straints while ensuring high levels of
dependability and security). Security is inter-
linked with other non-functional behaviors
such as predictability/timeliness and
resource consumption, as well as inadver-
tent effects on reliability and availability.
Figure 3 illustrates some of those depen-
dencies on the single-model, multiple-analy-
sis view.

An MBE Approach to
Validating Confidentiality
Confidentiality addresses concerns that
sensitive data should be disclosed to or
accessed only by authorized users (i.e.,
enforcing prevention of unauthorized dis-
closure of information). Data integrity is
closely related, as it concerns prevention of
unauthorized modifications of data.

To model and validate the confidential-
ity of a system, we distinguish between
general and application-dependent valida-
tion. General validation of confidentiality is
the process of ensuring that a modeled sys-

tem conforms to a set of common condi-
tions that support system confidentiality
independent of a specific reasoning frame-
work for security. MBE takes advantage of
the versatile concept of subjects operating
on objects by permissible access (read, exe-
cute, append, and write), a notion intro-
duced by Bell and LaPadula [1], enabling us
to model and validate security at both the
software and hardware levels.

This form of validation assumes that
subjects and objects are assigned a security
level that is the minimum representation to
enforce basic confidentiality and need-to-
know principles. By contrast, application-
specific validation relies on detailed confi-
dentiality requirements and a specific, rea-
soning-based security framework.

The MBE security framework features:
• Representation of the confidentiality

requirements of resources (i.e., objects).
• Representation and generation of secu-

rity clearance/least privileges3 of sub-
jects operating on the objects.

• Representation of authorized opera-
tions, ensuring unauthorized infiltra-
tion, unauthorized exfiltration, and
unauthorized median of actions. This is
captured in an access matrix.
With the object’s security requirements

specified in an AADL model, the least
amount of privileges for the subjects can
be generated in a straightforward manner.
Given that the subjects’ privileges are
specified, a mismatch between the least
privilege and what has been specified

ARCHITECTURAL
MODEL

AVAILABILITY
AND RELIABILITY

Mean Time Between Failures (MTBF)
Failure Mode and Effects Analysis (FMEA)
Hazard Analysis

DATA QUALITY

Temporal Correctness
Data Precision/Accuracy
ConfidenceREAL-TIME

PERFORMANCE

Deadlock/Starvation
Latency
Execution Times/Deadlines

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

ARCHITECTURAL
MODEL

AVAILABILITY
AND RELIABILITY

MTBF
FMEA
Hazard Analysis

DATA QUALITY

Temporal Correctness
Data Precision/Accuracy
ConfidenceREAL-TIME

PERFORMANCE

Deadlock/Starvation
Latency
Execution Times/Deadlines

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

Increased confidentiality
requirement

• Change of encryption policy

System 1

Secure
Information

Software
Application

Operating
System

Hardware
Platform

System 2

Secure
Information

Software
Application

Operating
System

Hardware
Platform

Communication Channel

Application is trusted
to deal with protected

resources

Operating System
supports protection
of applications (e.g.,
memory partitioning)

Operating System

runs on a
trusted platform

 Communication is
secured (e.g.,

encryption)
Figure 3: Single Architectural Model Showing an Example of Impact on and Interaction of Non-
Functional Behavior Due to a Change in Security

ARCHITECTURAL
MODEL

AVAILABILITY
AND RELIABILITY

Mean Time Between Failures (MTBF)
Failure Mode and Effects Analysis (FMEA)
Hazard Analysis

DATA QUALITY

Temporal Correctness
Data Precision/Accuracy
ConfidenceREAL-TIME

PERFORMANCE

Deadlock/Starvation
Latency
Execution Times/Deadlines

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

ARCHITECTURAL
MODEL

AVAILABILITY
AND RELIABILITY

MTBF
FMEA
Hazard Analysis

DATA QUALITY

Temporal Correctness
Data Precision/Accuracy
ConfidenceREAL-TIME

PERFORMANCE

Deadlock/Starvation
Latency
Execution Times/Deadlines

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

SECURITY

Intrusion
Integrity
Confidentiality

Increased confidentiality
requirement

• Change of encryption policy

System 1

Secure
Information

Software
Application

Operating
System

Hardware
Platform

System 2

Secure
Information

Software
Application

Operating
System

Hardware
Platform

Communication Channel

Application is trusted
to deal with protected

resources

Operating System
supports protection
of applications (e.g.,
memory partitioning)

Operating System

runs on a
trusted platform

 Communication is
secured (e.g.,

encryption)

Figure 2: System Perspective on Security

Application Security

12 CROSSTALK The Journal of Defense Software Engineering September 2008

means the assigned privilege is either
insufficient or greater than the minimum
privilege. The latter result may be unnec-
essary or an indication that the subject
might be associated with objects not yet
described in the model.

The following types of security valida-
tion and analysis are available as OSATE
plugins:
• Basic confidentiality principle. Ac-

cess should only be granted if given the
appropriate security clearance.

• Need-to-know principle. Access
should be granted to a resource only if
there is a need.

• Controlled sanitization. Lowering the
security level of an object or subject
should only be authorized and per-
formed by a privileged subject.

• Non-alteration of object’s security
requirements. A subject using an
object as input should not alter the secu-
rity level of the object, even if the object
is updated as an output from the subject.

• Hierarchical conditions. A compo-
nent has (1) a security level that is the
maximum of the security levels of its

subcomponents, and (2) all connections
are checked to determine whether the
source component of a connection
declaration has a security level that is
the same or lower than that of the des-
tination component.
Using OSATE and the AADL, system

designers and developers can add analysis
techniques as needed.

The validation through architectural
modeling of system security – given the
confidentiality requirements of data objects
and the security clearance by users – must
include validation of (1) software architec-
ture, and (2) system architecture where the
software architecture is mapped to hard-
ware components.

By mapping the entities of a software
architecture (e.g., processes, threads, and
partitions) to a hardware architecture (con-
sisting of, for example, CPUs, communica-
tion channels, and memory), we can ensure
that the hardware architecture supports
required security levels, as described in
Figures 4 and 5.

Consider the scenario of two commu-
nicating processes, both requiring a high

level of security because the data objects
require secret clearance. The system plat-
form in this scenario consists of a set of
CPUs with hardware support for various
algorithms that encrypt messages before
network transmission. By modeling the sys-
tem, we can represent and validate that
both processes and threads (now consid-
ered to be objects) can be executed (access
mode) on CPUs (subjects) with adequate
encryption support. Furthermore, we can
validate that CPUs (objects) communicate
data (access modes of writing and reading)
over appropriately secured communication
channels (subjects). In a similar fashion, we
can enforce design philosophies saying that
only processes of the same security level
are allowed to co-exist within the same
CPU or partition, or that they can write to
a secured memory.

A combination of the AADL and the
OSATE security plugin tool has been put
into use in industry. Rockwell-Collins used
the technology to enable the high-assur-
ance handling of data from multiple sen-
sors having varying levels of security, such
as airborne imagery with the Field
Programmable Gate Array (FPGA).
Typically, a high-assurance processor is
used to securely tag variable input. An
FPGA is powerful and fast. It is deemed
easier to develop applications on an FPGA,
which also reduces the cost and time-to-
market. Furthermore, the FPGA can be
reprogrammed at runtime (e.g., to fix bugs),
which can lower maintenance-engineering
costs. Because FPGA behavior is more
complex, architecture-level definition and
analysis are needed. To this end, Rockwell-
Collins developed architectural models of
the FPGA using AADL and used the
OSATE tool to validate security and
demonstrate the high-assurance potential
of FPGAs.

Validating MILS Architectures
With the MBE Approach
The AADL and OSATE tools can be used
to validate the security of systems designed
using the MILS4 architecture approach (see
[8, 9]). MILS uses two mechanisms to mod-
ularize – or divide and conquer – in archi-
tecting secure systems: partitions, and sepa-
ration into layers. The MILS architecture
isolates processes in partitions that define a
collection of data objects, code, and system
resources and can be evaluated separately.
Each partition is divided into the following
three layers, each of which is responsible for
its own security domain and nothing else:
1. Separation Kernel (SK). Responsible

for enforcing data isolation, control of
information flow, periods processing,

-- Property intended to be customized by modelers.
-- Parameterizes the security property definitions.
property set Security_Types is
 -- Military levels by default
 Classifications:
 Type enumeration (unclassified, confidential, secret,
 top_secret);
 -- This must be the first element of Classifications
 Default_Classification:
 constant Security_Types::Classifications =>

 -- Default set of categories
 Categories:
 type enumeration (A, B, C, D);
end Security_Types;

property set Security_Attributes is
 Class: inherit Security_Types::Classifications =>
 value(Security_Types::Default_Classification)
 applies to (data, subprogram, thread, thread group,
 process, memory, processor, bus, device,
 system, port, server subprogram,
 parameter, port group);

 Category: inherit list of Security_Types::Categories =>
 ()
 applies to (data, subprogram, thread, thread group,
 process, memory, processor, bus, device,
 system, port, server subprogram,
 parameter, port group);
 -- . . .
end Security_Attributes;

Figure 5: Architectural Components to Which Security Levels and Requirements Can Be Connected

-- Property intended to be customized by modelers.
-- Parameterizes the security property definitions.
property set Security_Types is
 -- Military levels by default
 Classifications:
 Type enumeration (unclassified, confidential, secret,
 top_secret);
 -- This must be the first element of Classifications
 Default_Classification:
 constant Security_Types::Classifications =>

 -- Default set of categories
 Categories:
 type enumeration (A, B, C, D);
end Security_Types;

property set Security_Attributes is
 Class: inherit Security_Types::Classifications =>
 value(Security_Types::Default_Classification)
 applies to (data, subprogram, thread, thread group,
 process, memory, processor, bus, device,
 system, port, server subprogram,
 parameter, port group);

 Category: inherit list of Security_Types::Categories =>
 ()
 applies to (data, subprogram, thread, thread group,
 process, memory, processor, bus, device,
 system, port, server subprogram,
 parameter, port group);
 -- . . .
end Security_Attributes;

Figure 4: Specification of Security Levels

Building Secure Systems Using Model-Based Engineering and Architectural Models

September 2008 www.stsc.hill.af.mil 13

and damage limitation. An example is
the SK Protection Profile [8].

2. Middleware service layer.
3. Application layer.

Thus, the MILS separates security
mechanisms and concerns into the follow-
ing three component types, classified by
how they process data:
• Single-Level Secure (SLS). Processes

data at one security level.
• Multiple Single-Level Secure (MSLS).

Processes data at multiple levels, but
maintains separations between classes
of data.

• MLS. Processes data at multiple levels
simultaneously and transforms data
from one level to another.
The strength of the MILS architecture

lies in its reductionist approach to decom-
pose a system into components of the
above-mentioned types that would be more
manageable to certify. These components
are also mapped to partitions (and, as men-
tioned earlier, the MILS architecture
approach builds on partitioning as one key
concept to enforce damage limitation and
separation of time and space).

An MBE approach is conducive to the
validation concerns most critical to MILS,
including:
• Validating the structural rigidity of

architecture, such as the enforce-
ment of legal architectural refine-
ment patterns of a security compo-
nent into SLS, MSLS, and MLS
types. Given that an MILS architecture
design and system is decomposed into
security components that can be certi-
fied in isolation, the structural rigidity
concerns the legal mappings and con-
nections of the components. The
decomposition into SLS, MSLS, and
MLS types can be applied to compo-
nents, connectors, and ports.
Furthermore, each component can be
divided into parts using the product,
cascade, or feedback decomposition
patterns [10, 11, 12]. For example, an
MSLS component with n security levels
can be decomposed into n distinct SLS
components. Thus, confidence in the
validation of an architecture increases
with the fidelity of the modeling. By
using an architectural model in AADL
to capture the security types and multi-
ple architectural levels, MBE analysis is
conducted to validate the correctness of
the decompositions and mappings.

• Architectural modeling and valida-
tion of assumptions underlying
MILS. Fundamental to enforcement of
security in an MILS architecture is hav-
ing a system that supports partitioning,
specifically damage limitation and sepa-

ration in time and space. By partitioning
the system, one minimizes the risk of
illegal component interactions among
components and protects components
from the faulty behavior. This can be
realized in the system architecture by
ensuring fault-containment and deploy-
ing security-cognizant memory alloca-
tion so that MILS components and
tasks reside in protected memory
spaces – and do not co-reside in the
same memory space if they differ in
security levels. Similarly, separation in
time can be ensured through avoiding
the interleaved execution of tasks with
different security levels, realized in par-
tition scheduling and validating execu-
tion behaviors. The AADL supports
the modeling of partitions and virtual
processors. As well, the virtual machine
mechanism is recognized as a key con-
cept for providing robustness through
fault containment because it provides
time and space partitioning to isolate
application components and subsys-
tems from affecting each other (due to
sharing of resources). This architecture
pattern can be found in the
Aeronautical Radio Incorporated
(ARINC) 653 standard [13]. A single-
source architectural model in AADL
can thus be used to validate the security
requirement in an architectural context,
specifically the MILS composition, and
the architectural assumptions required.

• Validating requirements specific to
the NEAT characteristics and the
communication system. MILS re-
quires that its SK and the trusted com-
ponents of middleware services are
implemented so that the security capa-
bilities enforce what is commonly
referred to as the NEAT characteristics:
° NNon-bypassable. Security func-

tions cannot be circumvented.
° EE valuatable. The size and com-

plexity of the security functions
allow them to be verified and
evaluated.

° AA lways invoked. Security func-
tions are invoked each and
every time without exception.

° TTamperproof. Subversive code
cannot alter the function of the
security functions by exhaust-
ing resources, overrunning
buffers, or other forms of mak-
ing the security software fail.

The MBE approach allows designers to
assure that software applications execute on
top of a secure operating system, map to a
protected and secured hardware memory
space, and communicate over secure com-
munication channels. It also enables the

analysis of security measures early and
throughout the development life cycle.

Conclusions
The objective of a secure system implies
that security clearances are given conserva-
tively. The MBE approach supports this
objective through enabling analysis of the
architectural model to derive the minimum
security clearance on components. By pro-
viding mechanisms to ensure that sanitiza-
tion is conducted within allowed bound-
aries, the MBE approach enables the sys-
tem designer to analyze and trace more
threatening security risks, since sanitizing
actions are permitted exemptions of securi-
ty criteria and rules, and as such should be
minimized in the system.

Security analysis using the MBE ap-
proach also supports:
• The evaluation of an architecture con-

figuration with respect to impact on
other non-functional attributes, such as
increases in power consumption, band-
width usage, and performance.

• The validation of architectural require-
ments necessary to enforce the MILS
approach to containing faults, through
partitioning and separation in time and
space.

• A reduction of the effort necessary for
re-certification in the event of architec-
tural changes.
Furthermore, validation of security can

be conducted at multiple layers and differ-
ent levels of fidelity, early and throughout
the development life cycle.u

References
1. Bell, D.E., and L.J. LaPadula. Secure

Computer Systems: Mathematical Foun-
dations MITRE Technical Report 2547,
Vol. 1. Bedford, MA: MITRE Corpo-
ration, 1973 <www.albany.edu/acc/
courses/ia/classics/belllapadula1.pdf>.

2. Bell, D.E., and L.J. LaPadula. Secure
Computer Systems: Unified Exposition
and MULTICs Interpretation MITRE
Technical Report ESD-TR-75-306.
Bedford, MA: MITRE Corporation,
1976 <http://csrc.nist.gov/publications/
history/bell76.pdf>.

3. Brewer, David D.C., and J. Michael
Nash. “The Chinese Wall Security
Policy.” IEEE Symposium on Security
and Privacy. Oakland, CA: 1-3 May
1989 <www.gammassl.co.uk/topics/
chinesewall.html>.

4. Lin, T.Y. Chinese Wall Security Policy –
An Aggressive Model. Proc. of the
Fifth Aerospace Computer Security
Application Conference. Tucson, AZ:
4-8 Dec. 1989 <http://ieeexplore.ieee.
org/iel5/7100/19131/00884701.pdf>.

Application Security

14 CROSSTALK The Journal of Defense Software Engineering September 2008

5. Ferraiolo, David, and Rick Kuhn. Role-
Based Access Control. Proc. of the
15th National Computer Security
Conference. Baltimore, MD: 13-16 Oct.
1992 <http://csrc.nist.gov/rbac/ferra
iolo-kuhn-92.pdf>.

6. Biba, K.J. Integrity Considerations for
Secure Computer Systems MITRE
Technical Report-3153. Bedford, MA:
MITRE Corporation, Apr. 1977.

7. AADL. Find and Solve Problems Bef-
ore Runtime With Model-Based Engi-
neering. 14 Apr. 2008 <www.aadl.info>.

8. The Common Criteria Evaluation and
Validation Scheme. Validation Protect-
ion Profile – U.S. Government Protect-
ion Profile for Separation Kernels in
Environments Requiring High Robust-
ness, Vers. 1.03. 11 July 2008 <www.
niap-ccevs.org/cc-scheme/pp/id/pp_
skpp_hr_v1.03>.

9. Alves-Foss, J., W.S. Harrison, P. Oman,
and C. Taylor. “The MILS Architecture
for High-Assurance Embedded Sys-
tems.” International Journal of Em-
bedded Systems 2.3/4 (2006): 239-347.

10. Zhou, J., and J. Alves-Foss. “Security
Policy Refinement and Enforcement
for the Design of Multi-Level Secure
Systems.” Journal of Computer Security
16.2 (2008): 107-131.

11. McLean, J. “Security Models.” Encyclo-
pedia of Software Engineering. John

Wiley & Sons, New York, NY: 1994.
12. Zakinthinos, A. “On the Composition

of Security Properties.” Diss. U of
Toronto, Mar. 1996.

13. ARINC Incorporated. Avionics Appli-
cation Software Standard Interface,
ARINC 653 Standard Document 14
Apr. 2008 <www.arinc.com>.

14. National Institute of Standards and
Technology (NIST). The Economic
Impacts of Inadequate Infrastructure
for Software Testing. NIST Planning
Report. May 2002 <www.nist.gov/
director/prog-ofc/report02-3.pdf>.

Notes
1. A NIST study observed that 70 percent

of all defects are introduced prior to
implementation. Yet only 3.5 percent of
the defects were detected in these phas-
es, while 50.5 percent of the faults were
detected in the integration phase. The
defect removal cost ranged from 5 to 30
times relative to the cost of removing
the defect in the phase of introduction
(if it had been detected). Other sources
are reporting similar estimates; while
the numbers vary, the conclusions do
not [14].

2. The AADL, an international industry
standard, incorporates an XML/XMI
exchange format to support model
interchange and tool chaining. AADL

also can be used (1) with UML state and
process charts through its UML profile,
(2) to drill into root causes and develop
quantitative analysis as a follow-up to
the SEI Architecture Tradeoff Analysis
Method®, and (3) in conjunction with
assurance cases, to support claims made
about the safety, security, or reliability of
a system. The freely available OSATE
includes analysis plugins for perfor-
mance, resource consumption, security,
and reliability.

3. The principle of least privilege has been
identified as important for meeting
integrity objectives; it requires that a
user (subject) be given no more privi-
lege than necessary to perform a job.
This principle includes identifying what
the subject’s job requires and restricting
the subject’s ability by granting the min-
imum set of privileges required.

4. MILS has been proposed as an approach
to building secure systems [9, 10]. MILS
is a joint research effort of academia,
industry, and government, led by the
U.S. Air Force Research Laboratory. The
MILS approach is based on the notion
of separating – and thus limiting the
scope and reducing the complexity of –
the security mechanisms.

About the Authors

Jörgen Hansson, Ph.D.,
is a senior member of the
technical staff and lead
of the Performance-Crit-
ical Systems (PCS) Initia-
tive at the SEI, and is a

professor of computer science at Lin-
köping University, Sweden. The Initia-
tive focuses on developing, maturing,
and transitioning analysis-based assur-
ance and model-based engineering tools
and practices for predicting the depend-
ability and performance of software sys-
tems. Hansson holds bachelor’s and
master’s degrees in computer science
from University of Skövde, Sweden, and
a doctorate in computer science from
Linköping University, Sweden.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-6733
Fax: (412) 268-5758
E-mail: hansson@sei.cmu.edu

Peter H. Feiler, Ph.D.,
is a senior member of
the technical staff in the
PCS Initiative at the SEI.
He has authored more
than 80 articles in the

areas of dependable real-time systems,
architecture languages for embedded
systems, and predictable system analysis
and engineering. Feiler is the technical
lead and author of the SAE AS-2C
AADL standard. Feiler holds a Vordi-
plom degree in math/computer science
from Technical University Münich, and a
doctorate in computer science from
Carnegie Mellon University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-7790
Fax: (412) 268-5758
E-mail: phf@sei.cmu.edu

John Morley is a mem-
ber of the operating staff
at the SEI. He has
reported on model-based
engineering and service-
oriented architecture for

SEI publications, has more than 20 years
experience in writing and editing scien-
tific and technical materials, and holds a
master’s degree in English literature
from Duquesne University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-6599
Fax: (412) 268-5758
E-mail: jmorley@sei.cmu.edu

® The Architecture Tradeoff Analysis Method is registered in
the U.S. Patent and Trademark Office by Carnegie Mellon
University.

September 2008 www.stsc.hill.af.mil 15

Even though the vulnerability counts
have dropped, the number of vulner-

abilities is not zero. And, even in my
wildest dreams, I do not think we will get
to zero. I will explain why shortly.

In the very early days of the SDL,
Microsoft focused heavily on removing
design and code-level security vulnerabili-
ties; as we progressed, we added processes
that help reduce the chance that new vul-
nerabilities get added to the software.

Examples of implementation require-
ments in the SDL include:
• Use of code analysis tools on develop-

er’s desktops to find security vulnera-
bilities.

• Removing known insecure functions
(such as the C runtime strcpy and strncpy
functions).

• Migrating weak cryptographic algo-
rithms to more robust algorithms
(such as Data Encryption Standard to
Advanced Encryption Standard,
Secure Hash Algorithm (SHA)-1 to
SHA-256).
But the SDL is constantly evolving. We

update the SDL roughly twice a year so we
can keep pace with new vulnerabilities and
new security research. We find the contin-
uous improvement to the SDL to be a sig-
nificant benefit compared to static securi-
ty certification programs – such as the
Common Criteria – which do not evolve
so quickly.

Over the last few years, the SDL has
been extended to embrace a stronger
focus on defense in depth. While some
updates to the SDL continue to address
design and implementation vulnerabilities,
more of today’s SDL requirements focus
on defense in depth.

The prime driver for this change is a
realization that you can never remove all
security vulnerabilities from software. The
reason this statement is true is simple.
Some software you create might be com-
pletely secure today, but that could all
change tomorrow when security
researchers learn (and potentially make

public) new classes of vulnerabilities.
Allow me to illustrate the point with a

real example.
In October 2003, Microsoft issued a

security bulletin, MS03-047 [1] that fixed a
cross-site scripting (XSS) vulnerability in
the Outlook Web Access (OWA) front
end to Microsoft’s Exchange 5.5 software.
In August 2004, Microsoft issued another

bulletin, MS04-026 [2], in the same OWA
component that was fixed in MS03-047 to
fix an XSS variation called HTTP
response splitting. Interestingly, the code
fixes were relatively close to one another.
So the question that’s probably on your
mind is, “What happened? How did you
guys miss the bug that led to MS04-026?”
The answer is simple. At the time we
issued MS03-047, the world had not heard
of HTTP response splitting vulnerabili-
ties. In theory, the Microsoft Exchange
engineers could have scoured the code
and fixed every known security bug, but
they would probably have missed the vul-
nerability that led to MS04-026 because
nobody knew of that class of vulnerabili-
ty at the time. So what changed? What led
to the security vulnerability? In March

2004, Sanctum (purchased by Watchfire,
which has since been purchased by IBM)
released a paper entitled “Divide and
Conquer” [3] describing a variation of the
XSS vulnerability. When the Microsoft
engineers fixed the first bug, the second
class of bug was unheard of.

Unfortunately, there were no defense
in depth mechanisms in place to protect
customers from either of these vulnerabil-
ities, so customers had to apply a security
update to protect themselves.

Another example is the integer arith-
metic vulnerability [4]. Without going into
a detailed explanation, this kind of bug
was unheard of 10 years ago, and is a very
common security vulnerability today.

The moral of this story is that you can
never create totally secure code. There are
many reasons why:
• People make mistakes.
• Tools are not perfect.
• Security can have very subtle nuances

that only security experts understand,
especially with regard to cryptography.

• The Internet is an asymmetric battle-
ground. There are many hidden and
skilled attackers who can strike at will,
but defenders must be constantly vigi-
lant and never make mistakes.

• Most importantly, we cannot predict
future classes of vulnerabilities.
There are two final points that I really

wish to stress because these make defense
in depth especially critical today:
1. As the security vulnerability landscape

evolves, more vulnerability informa-
tion is moving underground and being
used by criminals to attack sensitive
systems. The defenders do not know
the system is vulnerable, so no securi-
ty update is available. This is clearly a
risk for government systems.

2. Somewhat similar to the first point is
that we are seeing more zero-day vul-
nerabilities. There may be no attacks
yet, but there is no update or
workaround either.
The rest of this article outlines some

Practical Defense in Depth

As part of its ongoing commitment to Bill Gates’ vision of Trustworthy Computing, Microsoft officially adopted important
security- and privacy-related disciplines to its software development process. These changes, called the Security Development
Lifecycle (SDL) have led to a demonstrable reduction in security vulnerabilities in products such as Microsoft’s Windows
Vista operating system and its SQL Server 2005 database. The purpose of this article is not to describe the SDL in detail,
but to outline some of the practical defensive measurements in use at Microsoft required by the SDL. If Microsoft’s SDL
is new to you, refer to the page 16 sidebar, “A Brief SDL Overview.”

Michael Howard
Microsoft Corp

“Some software you
create might be

completely secure today,
but that could all change
tomorrow when security
researchers learn (and
potentially make public)

new classes of
vulnerabilities.”

of the defense in depth techniques and
technologies applied as part of the SDL at
Microsoft.

Classes of Defense in Depth
Mechanisms
Under the SDL, there are two distinct
types of defense in depth mechanisms. We
don’t call them out explicitly as different
classes, but the distinction between the
two classes is understood.

The first type of defense is designed to
totally stop an attacker from accessing a
system or software. This class of defense
offers a level of assurance that stops an
attacker when the defense is correctly con-
figured and used. If it does not stop an
attacker, then the defense has a vulnerabil-
ity that must be fixed. One example is the
ubiquitous firewall. The SDL sets strict
requirements on the process for opening
an inbound port on the Windows Firewall.
Other examples include permissions on
objects: a weak permission could render a
system insecure. For example, Microsoft
issued a security bulletin, MS04-005 [5],
for VirtualPC for the Apple Macintosh
because of a weak permission on a critical
file that led to a symlink-style attack [4].

Strong operating system access con-
trols are an important part of the SDL
and critically important to any system;
however, a new requirement in the SDL
this past year is strong access control
mechanisms on database objects.

Structured Query Language (SQL) injec-
tion vulnerabilities are a well understood
vulnerability that can lead to disclosure of
sensitive data, data corruption, and, in
some cases, system compromise [4]. The
industry as a whole has created best prac-
tice documentation and tools to help
remove these critical bugs, but all it takes
is a new attack type or an error to leave a
customer open to attack and compromise.
The SDL-required defense in depth mech-
anisms help to mitigate this risk. In short,
direct access to the underlying tables is
explicitly denied to all but the database
administrators, and untrusted access is
limited to appropriate database objects
such as stored procedures and views.
These objects are granted access to the
underlying data. This configuration has
the effect that if an attacker can bypass
the normal defenses against SQL injec-
tion, he or she still cannot read the under-
lying data in the tables. The correct reme-
dy to prevent SQL injection is to build
safe SQL queries, but the table-level
defense is there solely in case the remedy
fails or is implemented incorrectly.

The second type of defense is a set of
mechanisms that is designed to slow an
attacker down or make an attacker create a
different exploit to attack a system. I want
to spend most of this article on this sub-
ject. At Microsoft, we continue to spend a
great deal of time and effort researching,
designing, and implementing these defens-

es: most of them are intended to help mit-
igate buffer overrun and integer overflow
vulnerabilities. A great deal of C and C++
code exists today, and even more is written
every day. In a perfect world, people
would simply abandon C and C++ in
favor of safer programming languages
such as C# or Java, but in our imperfect
world, C and C++ are often the correct
tools for the job. Again, in a perfect world,
C and C++ developers would write secure
code, but in our imperfect world this is
not always possible; however, it is impor-
tant that C and C++ developers take
advantage of defense in depth mecha-
nisms. The SDL mandates a number of
important C and C++ defenses, including:
• Address randomization.
• Stack-based buffer overrun detection.
• Heap corruption detection.
• Pointer protection.
• No-execute (often called NX or

W^X).
• Service failure restart policy.

Note that none of these defenses actu-
ally remove vulnerabilities, nor do they
magically make software more secure.
What they do is turn a potential code exe-
cution exploit into a denial-of-service bug
because these defenses will simply fail the
application if they detect an anomalous
condition. If an application crashes, it also
gives the attacker fewer opportunities to
re-attempt an attack.

I do not intend to cover each of these
in deep technical detail. The reader is
urged to e-mail the author or refer to the
references for further information [6, 7].

Address Randomization
There is nothing attackers love more than
a predictable system since it makes build-
ing reliable exploits easier. Reliable
exploits are harder to detect because they
usually execute correctly and do not crash
or alert the system operators to nefarious
acts. Windows Vista and Windows Server
2008 (and later) offer image randomiza-
tion, stack randomization, and heap ran-
domization. Image randomization relo-
cates the entire operating system into one
of 256 possible configurations on each
reboot. By default, non-operating system
images are not randomized, and third-
party components must opt into image
randomization using the /DYNAM-
ICBASE linker option in Visual C++
2005 Service Pack 1 and later. Some ver-
sions of GNU’s C Compiler (GCC) and
some versions of Linux and Berkeley
Software Distribution (BSD)-based sys-
tems also support image randomization by
using the -pie compiler option.

Windows Vista and Windows Server

16 CROSSTALK The Journal of Defense Software Engineering September 2008

A Brief SDL Overview
The SDL is a set of requirements and recommendations added to an existing soft-

ware development process to improve security. A side benefit of the SDL is increased
robustness since many security vulnerabilities also affect robustness. SDL is all about
security improvement, not perfection.

There are two goals to the SDL. The first is to reduce the number of security vul-
nerabilities in Microsoft products. This is done by removing vulnerabilities from software,
or better yet, not adding vulnerabilities to the code from the outset. This reduction in vul-
nerabilities is achieved through education, tooling, better libraries, and so forth. The sec-
ond goal is to reduce the severity of any vulnerabilities that are inadvertently left in the
product. You can reduce severity by adding defensive mechanisms. The purpose of this
article is to explain some of those defenses.

In a nutshell, we teach people to: Do everything possible to make your product as
secure as possible, but assume it will fail.

A requirement defines an SDL task that must be completed prior to giving the code
to customers, and a recommendation defines a best practice that should be considered
by the development team. It is not uncommon for a security best practice to start out as
a recommendation and then progress to a requirement.

The SDL defines requirements and recommendations for:
• Education.
• Risk assessment.
• Threat modeling.
• Coding.
• Testing.
• Final security review.
• Maintenance.
You can learn more about the SDL in “The Security Development Lifecycle”

(Microsoft Press, Howard and Lipner), or at the SDL blog: <http://blogs.msdn.com/sdl>.

Application Security

Practical Defense in Depth

September 2008 www.stsc.hill.af.mil 17

2008 and later also support stack random-
ization; when a thread is started, the
thread’s stack is offset by up to 32 pages (4
kilobytes on a 32-bit central processing
unit). Again, this option is available by
linking with /DYNAMICBASE.

Finally, Windows Vista and Windows
Server 2008 (and later) support heap ran-
domization, meaning that when an appli-
cation allocates dynamic memory from
the system heap, the operating system off-
sets the start of the heap by a random
amount. Heap randomization is enabled
by default in Windows Vista and Windows
Server 2008.

Together, image, stack, and heap ran-
domization can seriously hinder an attack-
er dealing with the lack of predictability.
Usually the sign of a failed attack is a crash
in the application under attack. This
means that system administrators should
really pay attention to applications that
crash, as crashes may not just be the sign
of a coding bug but a sign of a security
bug under attack.

Stack-Based Buffer Overrun
Detection
Stack-based buffer overrun detection is
available in Microsoft Visual C++ 2003
and later through the /GS compiler
switch. It works by adding a random num-
ber into a function’s stack frame at call
time and when the function returns code
inserted by the compiler, it verifies that the
random number has not changed. If it has
changed, then the application crashes
because a stack-based buffer overrun has
been detected. At this point, we can no
longer trust the integrity of the data or the
application. Some versions of the GCC
offer a similar defense by using -fstack-
protector.

This defense could require the attacker
to build a specific attack to circumvent the
defense. A good example of how this
helped protect customer is the Blaster
Worm. On Windows Server 2003 (but not
Windows 2000 or Windows XP), the vul-
nerable component was compiled with
/GS. The malicious Blaster payload was
not aware of the /GS defense, so it
crashed Windows Server 2003 machines
rather than infecting them with the Blaster
Worm.

Heap Corruption Detection
Heap corruption detection is an operating
system defense available in Windows Vista
and Windows Server 2008 (and later). It is
similar in principle to stack-based buffer
overrun detection but detects heap meta-
data corruption. Again, if the heap is cor-

rupted, the operating system can shut
down the application, reducing the chance
that an attacker will re-attempt a failed
attack.

Pointer Protection
C and C++ pointers are an attack vector;
if an attacker can overwrite a long-lived
pointer in memory, he or she can poten-
tially compromise a computer by writing
arbitrary data at a predictable location.
Windows includes functions that encode
(XOR) a pointer with a random value, and
this operation must be reversed success-
fully in order to get the valid pointer value.
In other words, if an attacker attempts to
overwrite a pointer, he or she must over-
write it with a value that survives the un-
encoding operation. Clearly, this is not
impossible, but it is another defense the
attacker must overcome. The application
programming interfaces in Windows that
perform these operations are:
• EncodePointer and DecodePointer.
• EncodeSystemPointer and Decode

SystemPointer.
Note that GLIBC v2.5 (and later) have

a similar defense, but it’s mainly used in-
side GLIBC itself to protect setjmp point-
ers. The functions, defined in sysdep.h are
PTR_MANGLE and PTR_DEMANGLE.

No-Execute (Often Called W^X)
Microsoft calls no-execute data execution
prevention (DEP). This defense marks
pages of memory as Writeable or
Executable, but not both. Essentially, this
makes it very hard for an attacker to run
malicious code out of a writeable memory
segment. Most CPUs today support this
capability. It is by no means a perfect
defense and DEP requires randomization
to be effective at stopping a class of
attacks known as return-to-libc [8].

In Windows, you can link with
/NXCOMPAT to opt-in for DEP.

Some versions of BSD and Linux sup-
port W^X also, but the compiler and
operating system support is not consistent
across platforms.

Service Failure Restart Policy
A final defense in Windows Vista and
Windows Server 2008 was very hard to
implement without sacrificing reliability.
Windows uses many services, akin to Unix
daemons, to perform critical system tasks.
Services are usually long-lived processes
that start when a system starts. In many
cases, administrators want a crashed ser-
vice to simply restart. This policy gives
better uptime to customers. This is great
for reliability, but it can be terrible for
security because it means that an attacker

can keep trying his attacks over and over
until they succeed. The ability to retry is
especially important in a system that
implements a great deal of randomization,
such as Windows Vista and Windows
Server 2008.

Windows offers the ability to define a
policy that restarts a failed service no
more than a certain number of times or
on a certain schedule. For example, an
administrator could define a policy that
will restart a process 10 times within 24
hours, and after that no longer allow it to
restart unless an administrator physically
restarts the service. It is also possible to
restart a process indefinitely. But we don’t
want to give attackers the ability to re-try
their attacks indefinitely, so we tightened
up the restart policy for many highly
exposed system services.

For example, in Windows Server 2008,
many services, including the Network
Access Protection Agent, are set to restart
twice, and then no longer restart. In other
words, the attacker has two shots. With all
the randomization in place in Windows
today, this makes the attacker’s job much
more difficult.

The Question of Least
Privilege
You may have noticed that I have not
mentioned least privilege as a defense, and
I left it out on purpose. Clearly, least priv-
ilege is an important defense, but it is nec-
essarily an imperfect wall because many
products have had and will continue to
have local escalation of privilege vulnera-
bilities. Also, least privilege does not miti-
gate many information disclosure vulnera-
bilities. Malicious code running as a nor-
mal user, rather than an administrator, can
still access data accessible by the user, and
that data could include sensitive data such
as passwords, encryption keys, personal
financial information, and e-mail. Within
the SDL we think of least privilege as very
important, but we also recognize that on a
normal user’s computer, it can be hard to
enforce the security boundary and have a
usable system. A good example of this is
running mobile code through a Web
browser. At some point, a user will proba-
bly visit a Web site that requires a Java
applet, a Flash file, or perhaps some mul-
timedia experience that will require some
mobile code. Installing this code is a trust-
ed operation, so the user must elevate to
an account that can install the code. The
process of elevating can lead to weakness-
es in a pure least privilege environment.
Of course, it is possible to utterly lock a
system down in such a way that it is very

difficult for a user to elevate at all; for
some installations processing sensitive
information, this is the right answer.

Summary
Writing code that is perfectly secure in the
long term is not possible; new attack types
appear almost weekly. But it is imperative
that systems offer a degree of protection,
even in the face of new classes of attacks
and design and coding vulnerabilities. This
means that software development organi-
zations should spend a great deal of time
thinking about defense in depth mecha-
nisms, as well as focusing on “getting the
code right.” A simple mantra to consider
is, “Your code will fail – now what?”

The problem is exacerbated by zero-
day vulnerabilities, and vulnerability
research moving underground to be used
for criminal purposes.

If there is one lesson we can all learn,
it is this: Defense in depth is just as impor-
tant as following good security coding and
design practices, because you will never
get the product totally secure.

If there is a second lesson, it is that
you must use as many defense in depth
mechanisms as possible and they must be
enabled by default because defense in
depth is most useful in the face of an
attack that takes advantage of a vulnera-
bility that is not publicly known.

We have implemented the defenses
listed above in various Microsoft products.
I would urge you to take advantage of
these defenses if you build on the
Microsoft platform; if you use other prod-
ucts, understand what defense in depth
mechanisms they offer and use them.u

References
1. “Vulnerability in Exchange Server 5.5

Outlook Web Access Could Allow
Cross-Site Scripting Attack.” Online
posting. 12 Apr. 2004 <www.micro
soft.com/technet/security/bulletin/
ms03-047.mspx>.

2. “Vulnerability in Exchange Server 5.5
Outlook Web Access Could Allow
Cross-Site Scripting and Spoofing
Attacks.” Online posting. 10 Aug. 2004
<www.microsoft.com/technet/secur
ity/bulletin/ms04-026.mspx>.

3. Klein, Amit. “Divide and Conquer.”
HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics.
Mar. 2004 <www.packetstormsecur
ity.org/papers/general/whitepaper_
httpresponse.pdf>.

4. Howard, Michael, David LeBlanc, and
John Viega. 19 Deadly Sins of
Software Security. Emeryville, CA:
McGraw Hill, 2005.

5. “Vulnerability in Virtual PC for Mac
Could Allow Privilege Elevation.”
Online posting. 10 Feb. 2004 <www.
microsoft.com/technet/security/
bulletin/ms04-005.mspx>.

6. Howard, Michael, and Matt Thomlin-
son. “Windows Vista ISV Security.”
Microsoft Developer Network. Apr.
2007 <http://msdn2.microsoft.com/
en-us/library/bb430720.aspx>.

7. Howard, Michael. “Protecting Your
Code with Visual C++ Defenses.”
MSDNMagazine. Mar. 2008 <http://
msdn2.microsoft.com/en-us/maga
zine/cc337897.aspx>.

8. McDonald, John. “Defeating Solaris/
SPARC Non-Executable Stack Pro-
tection.” Online posting. 2 Mar. 1999
<www.ouah.org/non-exec-stack-sol.
html>.

Application Security

18 CROSSTALK The Journal of Defense Software Engineering September 2008

About the Author

Michael Howard is a
principal security pro-
gram manager on the
Trustworthy Computing
Group’s Security Engi-
neering team at Micro-

soft, where he is responsible for manag-
ing secure design, programming, and
testing techniques across the company.
Howard is an architect of the SDL, a
process for improving the security of
Microsoft’s software. He began his career
with Microsoft in 1992 at the company’s
New Zealand office, working for the first
two years with Windows and compilers
on the Product Support Services team,
and then with Microsoft Consulting
Services, where he provided security
infrastructure support to customers and
assisted in the design of custom solu-
tions and development of software. In
1997, he moved to the United States to
work on Internet Information Services,
Microsoft’s next-generation Web server,
before moving to his current role in
2000. Howard is a Certified Information
Systems Security Professional and a fre-
quent speaker at security-related confer-
ences. He regularly publishes articles on
security design and is the co-author of
six security books, including the award-
winning “Writing Secure Code,” “19
Deadly Sins of Software Security,” “The
Security Development Lifecycle,” and his
most recent release, “Writing Secure
Code for Windows Vista.”

E-mail: mikehow@microsoft.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

JAN2008 c TRAINING ANDEDUCATION

FEB2008 c SMALLPROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

APR2008 c PROJECT TRACKING

MAY2008 c LEAN PRINCIPLES

JUNE2008 c SOFTWARE QUALITY

JULY2008 c INFORMATION ASSURANCE

AUG2008 c 20TH ANNIVERSARY

to request back issues on topics not
listed above, Please contact <stsc.
customerservice@hill.af.mil> .

September 2008 www.stsc.hill.af.mil 19

As more and more interactions (includ-
ing personal, financial, and social)

become Web-based, a number of observa-
tions can be made. First, as technology ad-
vances and public awareness of Internet
security increases, an increasing portion of
Web traffic is likely to be carried by
Hypertext Transfer Protocol Secure
(HTTPS). Second, while that will provide
a level of end-to-end security, it will pre-
sent a new challenge for the functions and
services that rely on inspecting the con-
tent of Web traffic. Some of these ser-
vices and functions will concern security,
such as auditing and access control. The
challenge comes from two directions: (1)
the standard Web proxies of today pass
the HTTPS traffic through, and (2) Web
proxies are somewhat global (aggregating
Web traffic from many users or applica-
tions) and agnostic to personalization to
an individual user’s or an application’s
context and requirement. We developed a
personal proxy that is capable of handling
both HTTP and HTTPS traffic, and
demonstrated its use in tackling the threat
of phishing attacks. This personal proxy
will be a useful tool for implementing
functions and services that require inspec-
tion of Web traffic content.

Introduction
The ability to intercept normal interaction
between application components enabled
a number of useful functions such as
monitoring and auditing, adaptive failover,
load balancing, and (last but not least)
enforcement of security policies.
Obviously, the need for many of these
functions is already felt in the context of
Web-based applications. The use of Web
proxies by organizations to monitor and
protect Web-based applications running
within their networks, the use of load bal-
ancing mechanisms in server farms, and
handling cross-domain exchanges are
cases in point.

A number of interception-based func-
tions require deep inspection of the traffic,
meaning operations that need to access

the content of the payload, not just the
HTTP header information. Web proxies
can do this job perfectly for HTTP traffic,
but not for HTTPS traffic. The reason is
that HTTPS is the secure version of the
HTTP protocol, and HTTPS payloads are
encrypted by Transport Layer Security and
are not meant to be inspected or modified
by interlopers like the proxy.

As important services increasingly
become Web-enabled and as the task of
setting up HTTPS becomes routine, we

expect that increasing Web traffic will
move over to HTTPS to provide a level of
security that the users have come to
expect (e.g., the padlock sign on the
browser). This gain in one aspect of secu-
rity (i.e., site authentication and defense
against confidentiality and integrity attacks
on the information during the transit)
makes it difficult for functions that require
access to the content, such as auditing and
monitoring, application level rate limiting,
application level adaptive caching, con-
text-specific failover and load balancing,
and so forth. In addition, as Web services
become the de-facto mechanism of infor-
mation exchange, proxies are likely to play
a key role in handling cross-domain issues.
For example, opening HTTP connection
to Web sites other than the one from
which the current Web page was served is
usually not permitted from the browser,

but the application may need to interact
with services from other Web sites. Using
a proxy is one solution that is often used
to get around that problem. The problem
gets more complicated if different ser-
vices are at different security levels. If that
transaction happens over HTTPS, the
standard proxies will be of no use – one
must use a proxy like ours that can proxy
HTTPS.

The global and impersonal nature of
the proxies poses another challenge.
Unlike a firewall (that deals with many
protocols including HTTP and many
ports including those used by Web ser-
vices), a Web proxy is narrowly focused
on the HTTP traffic. However, like a fire-
wall, a Web proxy covers multiple hosts,
users, and applications in an aggregate
form. The wide variety of Web applica-
tions and their range of importance and
sensitivity – from financial transactions
like banking and shopping to social inter-
actions over Facebook, Web-based e-
mail, and chat – will demand an unfore-
seen level of personalization or applica-
tion-specificity in monitoring, auditing,
access control, rate limiting, or load bal-
ancing solutions. We claim that the aggre-
gate and one-size-fits-all nature of Web
proxies will make the Proxy-based
Solutions situated at the Internet Service
Provider (ISP) or at corporate boundaries
insufficient and less acceptable.

On one hand, the users will be less
comfortable disclosing their personal
preferences and requirements to the
remote proxy that they do not own and
control themselves. While understanding
and enforcement of the policy may be a
daunting task for some users, they will
still demand canned policies that they can
turn on. Think of setting your browser’s
security settings, but different settings for
Facebook and your bank, and even dif-
ferent settings for different Facebook
users in your household that you can con-
trol. Then, there will always be a group of
technology-literate users questioning the
adequacy of protection of personal data

Supporting Safe Content-Inspection of Web Traffic1

Interception of software interaction for the purpose of introducing additional functionality or alternative behavior is a well-
known software engineering technique that has been used successfully for various reasons, including security. Software wrap-
pers, firewalls, Web proxies, and a number of middleware constructs all depend on interception to achieve their respective secu-
rity, fault tolerance, interoperability, or load balancing objectives. Web proxies, as used by organizations to monitor and secure
Web traffic into and out of their internal networks, provide another important example.

Dr. Partha Pal and Michael Atighetchi
BBN Technologies

“We developed a
personal proxy that is

capable of handling both
HTTP and HTTPS traffic,
and demonstrated its use
in tackling the threat of

phishing attacks.”

and the quality of enforcement offered at
the remote proxy. On the other hand,
because the remote proxy aggregates
traffic flow from multiple users and
applications, they are ill-equipped to
enforce policies and preferences that are
highly specialized (personalized) for indi-
vidual applications or users without
mutual interference.

We argue that we need a personal Web
proxy that will do the following:
• Be situated near the user or the appli-

cation it proxies (it is even possible to
have dedicated proxies for each appli-
cation), and is controlled by the user
or the owner of the application it is
proxying.

• Enforce the user’s or the application’s
policies and personal preferences that
can be easily plugged in.

• Be able to inspect HTTPS traffic with-
out compromising the security gains
contributed by the HTTPS protocol.
The envisioned personal proxy is

analogous to personal firewalls: As per-
sonal firewalls bring firewall capability
near to the user’s host from the network
edge, the personal proxy will also push
proxying capability from the network
edge closer to the user or the application.
Furthermore, the personal proxy is a
valid application level proxying mecha-
nism that can be easily customized for
the application or user at hand; it pro-
vides an easy way to introduce additional
application or user-specific functionality
in the HTTP/HTTPS path.

There are a number of software engi-
neering reasons supporting the need of a
separate proxy, as opposed to embedding
the needed additional functions into the
application components it mediates
between. First, the proxy adds a separate
layer of protection (another process to
corrupt – a crumple zone, if you will), and
provides stronger isolation guarantees
(defense against memory corruption
attacks) and increased flexibility. The proxy
is less complex than the browser that has
to support applications ranging from
streaming media to Java applet, and pro-
vides a smaller attack surface. Since the
proxy is a dedicated process, it can be pro-
tected using technologies that implement
process protection domains, such as
SELinux [1] or Cisco Security Agent [2].
Second, a personal proxy offers a good
middle ground between the two extremes,
dealing with the aggregate of interactions
at the network edge or modifying each
application. A browser plugin-based
implementation will not be able to control
or monitor non-browser applications that
may use HTTP or HTTPS and should be

subject to the same user-defined policies
and preferences. To cover this situation,
one either assumes (somewhat unrealisti-
cally) that all applications interacting over
HTTP/HTTPS use the browser or are
forced to develop similar embedded capa-
bilities for each of those non-browser
applications. Furthermore, the corporate
or ISP proxy may not be able to enforce
policies of individual applications and
users at the network edge. It is easier to
implement user- or application-specific
policies and behavior into a personal proxy
that runs on the user’s host and, using fire-
wall rules, mandate that the only way
HTTP/HTTPS traffic gets in or out is
through the proxy. Third, any mechanism
that enables flexible and customizable
introduction of additional behavior, con-
straint enforcement, and monitoring with-
out requiring costly (and sometimes

impossible) code changes in the original
application is a valuable software engineer-
ing asset. The personal proxy performs
this job adequately. Other than ensuring
that the HTTP/HTTPS traffic flows
through it, no code change is necessary for
the applications that interact through it.
Finally, to be general and to support all
kinds of monitoring and inspection use-
cases, the additional user- or application-
specific policies and behavior must be
inserted before traffic is encrypted with
the remote site’s key. To illustrate the
point, note that Chinese users are able to
bypass governmental scrutiny enforced at
their network edge by interacting with
encrypting proxies outside China. While
our proposed personal proxies are con-
trolled by the user/application it covers (as
opposed to any government agency), there
are use-cases (e.g., parental control, cross-
domain security policy enforcement)
where personal proxies provide a better
solution than the browser-embedded
checks or proxies at the edge.

Under Department of Homeland
Security (DHS) funding, we have devel-
oped a customizable Web proxy that han-
dles both HTTP and HTTPS protocols.
For HTTPS, the proxy works by establish-
ing two System Specification Language

(SSL) connections: one between the
browser and the proxy, and the other
between the proxy and the remote Web
site. The customization happens by con-
figuring the proxy’s chain of interceptors.
The proxy can be placed near the user, on
the user’s computer, or at the user’s home
router box. We have demonstrated how
such a personalized proxy can be used to
protect the user from divulging personal
information to malicious Web sites (i.e.,
defense against phishing attacks). We have
started investigating other uses of the
proxy, such as auditing inter-agent com-
munication in a semantic Web application
so that the recorded interactions can be
used by machine-learning algorithms that
aim to learn and improve how the agents
achieve their tasks. In this article, we
briefly describe the architecture and oper-
ation of this personal proxy; a detailed
description and the anti-phishing applica-
tion appears in [3].

Architecture of the Personal
Proxy
Figure 1 illustrates the design of the per-
sonal proxy, which consists of four main
modules that are implemented on top of
Jetty, a popular open-source Web server
written in Java [4]. The plugin framework
provides a means for integration of cus-
tom reactive and proactive behavior. In
the first application of this proxy, all anti-
phishing checks were implemented as a set
of plugins for this module. A plugin can
be one of the following three types,
depending on its role in the overall control
flow and threading logic:
• Data plugins. Each data plugin is

invoked on every request and associat-
ed response. A data plugin is used for
handling the header and payload data
based on a specified security policy.
For example, a proxy could be config-
ured to record all or selected parts of
Web traffic as part of a parental con-
trol policy. Recordings can be persisted
securely on the disk.

• Checks. These plugins are organized
in a chain, and intercepted requests
flow through these checks like a
pipeline. An individual check exits with
either a break or a continue. A continue
indicates that the request goes to the
next stage, possibly with some addi-
tional metadata tagged to it. Breaks can
be of two kinds: A negative break indi-
cates that the request is to be blocked,
while a positive break indicates that the
request is to be accepted. In either
case, a break implies that the rest of
the pipeline stages are not executed.

20 CROSSTALK The Journal of Defense Software Engineering September 2008

“... a personalized proxy
can be used to protect
the user from divulging
personal information to
malicious Web sites ...”

Application Security

Supporting Safe Content-Inspection of Web Traffic

September 2008 www.stsc.hill.af.mil 21

This semantics of checks is amenable
to modular implementation and inte-
gration of security policies.

• Probes. In contrast to checks and data
plugins, which only execute reactively
when triggered by requests or respons-
es, probes allow us to embed proactive
behavior into the proxy. Probes con-
tain dedicated threads that trigger
monitoring functions at regular config-
urable intervals. The probes can be
configured to visit specified URLs and
scheduled intervals to collect data that
is relevant for the security policy con-
text. For example, in the case of
defending against phishing attacks, the
probes were used to check for changes
in an Internet Protocol address or
security credential of the banks or
financial sites registered by the user.
The lower part of Figure 1 displays the

remaining three modules. The modules act
as access paths into the proxy. The HTTP
Proxy listens on a configurable network
port (e.g., 8080) for incoming HTTP
requests, and dispatches the requests to a
main handler (InterceptHandler), which in
turn makes strategic use of the plugins.
This flow is similar in the case of the
HTTPS Proxy, except that it listens on a
different network port (8443) and uses a
custom extension of the InterceptHandler
(called SslProxyHandler) that intercepts
HTTPS connect requests and facilitates
subsequent interception of all HTTPS
requests in that session. The third access
path, HTTPS Requests, is for manage-
ment of the proxy through an administra-
tion console. Management functions
include changing the order of plugins and
their respective importance weights as well
as customization of user-specific data.
The administrative interface is optional
for out-of-the-box deployment, where the
proxy is preconfigured and preloaded with
appropriate plugins that enforce the
desired policy. We do not anticipate that
the internal details are important for most
of the users (beyond pointing their appli-
cations or browsers to the proxy). The
users who write and package custom poli-
cies for different users and applications
will need to know the details of plugins. A
better policy interface, supporting a gener-
ation of plugins (which can be added to
the proxy by editing a configuration file)
from higher-level policy specification, and
a better way to inspect the policies encod-
ed in existing plugins, is part of our future
work. Once this policy interface is in
place, these users will also be shielded
from the internal details and complexities
of the plugin architecture. If the internal
details change because of evolution of the

Jetty code base/Web services specifica-
tion, only the policy interface implementa-
tion will need to change.

Placement Options
The standard deployment of the proxy is
on the end user’s computer. Although this
puts a small load on the Central
Processing Unit (CPU), memory, and disk
resources on the end system, it has the
benefit of putting the proxy under direct
control of the end-user. Our understand-
ing is that end-users feel uncomfortable
with disclosing personal and sensitive
information (preferences, policies) to
external parties, but are more amenable to
providing this information to local com-
ponents as long as it doesn’t leave their
machine. Since many end-users own
either a wireless or DSL router and since
these devices already ship with Web serv-
er capabilities, we investigated deploying
the proxy on a Linksys WRT54G wireless
router running OpenWrt [5]. Another
option is to run the proxy on a home
router, which has the benefits of
increased security through stronger isola-
tion from a potentially virus-infected
desktop, and a new value-add for router
manufacturers. On the downside, the very
limited CPU and memory resources of
the home routers, especially wireless
routers, significantly lowers the perfor-
mance of the proxy.

Insertion Into HTTP(S) Flow
Insertion of the proxy into the non-
encrypted HTTP client-server path is
straightforward and involves changing the
client application’s proxy settings (e.g.,

HTTP Web browser). To prevent an attack-
er from replacing the proxy setting to a
proxy of his own, and to ensure that any
application using HTTP/HTTPS is subject
to the security policy enforced by the per-
sonal proxy, firewall rules should be set to
only allow outgoing Web traffic through
the personal proxy. For intercepting
encrypted requests from client application
that uses HTTPS, the client application’s
(such as the browser’s) proxy settings are
changed accordingly to redirect requests to
personal proxy’s HTTPS port. However,
describing how appropriate security associ-
ations are established is slightly more
involved (see Figure 2, next page).

In a regular use case without any
HTTPS proxy, SSL relies on a Public Key
Infrastructure for connection establish-
ment [6]. Following a general description
of the SSL protocol, the client issues a
connection request to the server, which
the server acknowledges with a response
containing a certificate signed by a certifi-
cation authority (CA). The client then con-
tinues to perform a set of checks on the
server certificate, the main one of which is
to verify that the CA’s signature is valid. In
most cases, SSL transactions essentially
establish a unidirectional trust relationship
between the browser and the target Web
server via a commonly trusted CA.

With the proxy in the mix, the proto-
col becomes a little more complex. The
proxy takes on the role of a server when
communicating with the browser and the
role of a browser when communicating
with the target Web server. This requires
the proxy to dynamically generate X509
certificates for each Domain Name

Jetty Web server

Plugin Framework
Data Plugins, Checks, Probes

Encrypted
Database

use

use use manage

HTTP Proxy HTTPS Proxy Admin Console

InterceptHandler SSLProxyHandler ResourceHandler

HTTPConnection HTTPConnection HTTPConnection

SocketListener SocketListener SSLListener

extend

create + handle

HTTP Requests HTTPS Requests

Socket 8080 8443 9443

dispatch

Figure 1: Functional Architecture of the Personal Proxy

System name it is proxying2 certified by its
own CA3 (called PB CA in Figure 2).
During installation, the Web browser’s
(and any other application’s using HTTPS)
settings are configured to trust signatures
from the PB CA. As a result, the overall
trust relationship between browser and
target Web server can now be decom-
posed into two daisy-chained relation-
ships, one between the browser to the per-
sonal proxy, and a second between the
personal proxy and the target Web server.

Does the proxy introduce additional
security vulnerabilities by breaking the
end-to-end encryption between browser
and Web server? The answer to this ques-
tion depends on the relative trustworthi-
ness of the proxy compared to the brows-
er and target Web server and where it is
deployed. Consider the case where the
user does not use a personal proxy, but
thinks that his desktop and the servers he
uses are more secure than the ISP server
through which he uses the Internet. The
ISP server may co-host other applications,
and if it does not have the latest security
patches installed, such a setup would sig-
nificantly lower the overall security of
Web transactions flowing through it. On
the other hand, if the personal proxy is
co-located with the Web browser on the
same desktop, we would expect it would
be more difficult for attackers to subvert
or corrupt the Java-based stand-alone
proxy process (which only listens on local-
host) compared to a C++ Web browser
running Javascript. In both cases, data is
never sent unencrypted over the network,
so the guarantees provided by SSL across
host boundaries are not affected.

Performance Overhead
Introduction of a clearly noticeable delay
presents increased resistance to adoption

of the new technology. To minimize per-
formance impact, we implemented the
proxy on top of the high performance
Jetty Web server and implemented various
optimizations in the SSL proxy architec-
ture to keep request latencies (i.e., elapsed
time between a request and its response)
within user acceptable levels. In this sec-
tion, we use overhead to mean the increase
in request latency due to interception of
HTTPS traffic by the proxy.

We measured the overhead in a lab set-
ting by visiting HTTPS sites without the
proxy and with the proxy configured with
a number of anti-phishing checks. The
mean time to load the visited pages
through the proxy was twice the mean
time to load the same pages without the
proxy (excluding any user interaction like
typing a password for both cases).
However, the variance of load time was
comparable to the mean (not surprising
because we were visiting sites on the
Internet), and even an overhead of rough-
ly 100 percent was not distinguishable
from the noise (as noted by external field
testers, the delay introduced by the proxy
does not noticeably impact the user Web
surfing experience). Much of this over-
head can be attributed to crypto opera-
tions and session multiplexing performed
in Java. We expect the plumbing overhead
to stay independent of the policy checks
enforced by the proxy.

We also compared the round-trip
latencies between an auditing configura-
tion (when the proxy is simply record-
ing) and a policy enforcing configuration
(loaded with anti-phishing checks). We
found that the two distributions are not
significantly different as their inter-quar-
tile ranges overlap to a large extent
(from 200 to 1,500 milliseconds [ms])
and both distributions have a large num-
ber of outliers (some even greater than

Application Security

22 CROSSTALK The Journal of Defense Software Engineering September 2008

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

October 14-16
Software Assurance Forum

Gaithersburg, MD
https://buildsecurityin.us-cert.gov/

daisy/bsi/events/930-BSI.html

October 19-23
International Conference on

Object-Oriented Programming Systems,
Languages, and Applications

Nashville, TN
www.oopsla.org/oopsla2008

October 20-21
National Defense Industrial Association

Technical Information Division Conference
Huntsville, AL

www.ndia.org/meetings/9010

October 26-30
SIGAda with SAMATE

Portland, OR
www.sigada.org/conf/sigada2008

November 10-14
Agile Development Practices 2008

Orlando, FL
www.sqe.com/agiledevpractices

November 11-14
19th IEEE International Symposium on

Software Reliability Engineering
Seattle, WA

www.csc2.ncsu.edu/conferences/
issre/2008

December 8-12
Annual Computer Security Applications

Conference
Anaheim, CA

www.acsac.org

April 20-23, 2009

21st Annual Systems and Software
Technology Conference

Salt Lake City, UT
www.sstc-online.org

Figure 2: Personal Proxy as a Trusted Middleman

Supporting Safe Content-Inspection of Web Traffic

September 2008 www.stsc.hill.af.mil 23

50,000 ms). We suspect that available
network bandwidth to the external Web
sites together with available CPU
resources of those sites have the biggest
impact on round trip latencies, which is
why the distributions looked similar.

Related Work
Various HTTP and HTTPS proxy imple-
mentations exist for debugging purposes
(Burp proxy [7], Charles proxy [8]) and
Web filtering (WebCleaner [9], Privoxy
[10]). There are also a number of com-
mercial network layer tools (e.g., eSafe’s
Web Threat Analyzer [11], McAfee
IntruShield [12]) that can inspect Web
traffic, including HTTPS that work at the
enterprise layer. In many cases, these are
geared for regulatory and auditing compli-
ance, the DHS-funded research focused
on transparent inspection of SSL traffic
exclusively for regulatory purpose.
However, we were unable to find a proxy
that could be used as a general purpose
middleware construct for customized user
and application-specific policies.

Conclusion
We have been developing advanced mid-
dleware technologies that enable adaptive
behavior, quality of service (QoS) man-
agement and QoS-based adaptive behav-
ior in distributed systems over the past
several years [13]. In doing so, we have
developed middleware constructs for han-
dling different styles of distributed inter-
action (e.g., distributed objects, publish-
subscribe, group communication) over a
number of protocols (e.g., socket-based,
Common Object Request Broker Archi-
tecture or Remote Method Invocation).
The present work involving HTTP and
HTTPS interception complements that
line of successful work, and enables us to
introduce advanced middleware capability
to distributed systems that use these pro-
tocols. The concept of a personal proxy
has the potential to fill an important and
emerging gap in the current Web-based
systems architecture.

However, as noted earlier, the person-
al proxy is still in its early stages – we only
have a prototype implementation that is
demonstrated with anti-phishing checks,
and have just begun exploring its use in
other contexts.

A number of software engineering and
usability issues also need additional work,
including an easy way to inspect enforced
policies and the ability to define policies at
a higher level of abstraction that can be
automatically translated into executable
code that can be integrated into the plug-

in framework. These are the next steps we
hope to tackle.u

References
1. Loscocco, P., and S. Smalley. Integrat-

ing Flexible Support for Security Pol-
icies Into the Linux Operating System.
Proc. of 2001 USENIX Annual Tech-
nical Conf. USENIX Association,
Berkeley, CA: 2001.

2. Cisco. “Cisco Security Agent-Enter-
prise Solution for Protection Against
Spyware and Adware.” Cisco White
Paper <www.cisco.com/en/US/prod/
collateral/vpndevc/ps5707/ps5057/
prod_white_paper0900aecd8020f438.
html>.

3. Zodgekar, Sameer A. Identity Theft: A
High-Tech Menace. ICFAI University
Press. Apr. 2008.

4. Mortbay.com. The Jetty Java Web
Server Vers. 5.1. 2007 <www.mortbay.
org/jetty-6/>.

5. Openwrt.org. The Linux Distribution
for Wireless Freedom <http://open
wrt.org>.

6. Wagner, D., and B. Schneier. Analysis
of the SSL 3.0 Protocol. Proc. of the
Second USENIX Workshop on Elec-
tronic Commerce. Oakland, CA: 1996.

7. Portswigger.net. The Burp Proxy Tool
Vers. 1.1. 2008 <www.portswigger.

net/proxy>.
8. Charles Web Debugging Proxy. About

Charles. <www.charlesproxy.com>.
9. Kuhnast, Charly. “Junk Zapper.” Linux

Magazine June 2004 <www.linux-mag
azine.com/issue/43/Charly_Column.
pdf>.

10. The Privoxy Team. Privoxy 3.0.8 User
Manual. 2008 <www.privoxy.org/user
-manual/index.html>.

11. Aladdin.com. “The eSafe Web Threat
Analyzer Audit.” 2008 <www.aladdin.
com/esafe/solutions/wta>.

12. McAfee.com. “McAfee Network Se-
curity Platform Data Sheet.” 2007
<www.mcafee.com/us/local_content
/datasheets/ds_network_security_
platform.pdf>.

13. BBN Technologies. The QuO Group
at BBN. “Distributed Systems Tech-
nology Group Papers.” <www.dist-sys
tems.bbn.com/papers/>.

Notes
1. This work was supported by the DHS

Advanced Research Projects Agency
under contract number NBCHCO50096.

2. To increase generation performance,
key pairs can be reused across certi-
ficates.

3. Alternatively, the PB CA can be signed
by a common root CA.

About the Authors

Partha Pal, Ph.D., is a
division scientist at BBN
Technologies’ National
Intelligence Research and
Application business unit.
His research interests

include adaptive and survivable distrib-
uted systems and applications, and tech-
nologies that enable adaptive behavior
and survivability. Pal has published more
than 35 technical papers in peer-review-
ed journals and conferences and is a
senior member of the Institute of Elec-
trical and Electronic Engineers (IEEE)
and a member of the Association for
Computing Machinery. He received his
master’s and doctorate degrees from
Rutgers University, New Brunswick, NJ.

BBN Technologies
10 Moulton ST
Cambridge, MA 02138
Phone: (617) 873-2056
Fax: (617) 873-4328
E-mail: ppal@bbn.com

Michael Atighetchi is a
scientist at BBN Tech-
nologies’ National Intel-
ligence Research and Ap-
plication business unit.
His research interests

include security and survivability, intelli-
gent agents, and middleware technolo-
gies. Atighetchi has published more than
20 technical papers in peer-reviewed
journals and conferences, and is a mem-
ber of the IEEE. He holds a master’s
degree in computer science from
University of Massachusetts at Amherst,
and a master’s degree in information
technology from the University of
Stuttgart, Germany.

BBN Technologies
10 Moulton ST
Cambridge, MA 02138
Phone: (617) 873-1679
Fax: (617) 873-4328
E-mail: matighet@bbn.com

Best Practices

In its report to President George W.
Bush entitled “Cyber Security: A Crisis

of Prioritization” (February 2005), the
President’s Information Technology
Advisory Committee summed up the
problem of non-secure software:

Network connectivity provides
“door-to-door” transportation for
attackers, but vulnerabilities in the
software residing in computers
substantially compound the cyber
security problem…. Software
development is not yet a science or
a rigorous discipline, and the devel-
opment process by and large is not
controlled to minimize the vulner-
abilities that attackers exploit.
Today, as with cancer, vulnerable
software can be invaded and modi-
fied to cause damage to previously
healthy software, and infected soft-
ware can replicate itself and be car-
ried across networks to cause dam-
age in other systems.

Like cancer, these damaging
processes may be invisible to the
lay person even though experts
recognize that their threat is grow-
ing. And as in cancer, both preven-
tive actions and research are criti-
cal, the former to minimize dam-
age today and the latter to establish
a foundation of knowledge and
capabilities that will assist the cyber
security professionals of tomorrow
to reduce risk and minimize dam-
age for the long term. Vulnerabili-

ties in software that are introduced
by mistake or poor practices are a
serious problem today. In the
future, the nation may face an even
more challenging problem as
adversaries – both foreign and do-
mestic – become increasingly so-
phisticated in their ability to insert
malicious code into critical soft-
ware.

Software is considered “secure” when
it exhibits three interrelated properties:
1. Dependability. The software executes

correctly and predictably, even when
confronted with malicious or anom-
alous inputs or stimuli.

2. Trustworthiness. The software itself
contains no malicious logic or any
flaws or anomalies that could be
exploited or targeted as vulnerabilities
by attackers.

3. Resilience. When the software is able
to resist most attempted attacks, toler-
ate the majority of those it cannot
resist, and recover with minimal dam-
age from the very few attacks that suc-
ceed (i.e., those the software could nei-
ther resist nor tolerate).

A number of factors influence how likely
software is to consistently exhibit these
properties under all conditions. These
include:
• The programming language(s), libraries,

and development tools used to design,
implement, and test the software, and
how they were used.

• How the software’s re-used, commer-
cial off-the-shelf, and open source

components were evaluated, selected,
and integrated.

• How the software’s executables were
distributed, deployed, configured, and
sustained.

• The security protections and services
provided to the software by its execu-
tion environment.

• The practices used to develop the software, and
the principles that governed those practices.
Experience over the past few decades

has shown that enhancing SDLC practices
with the objective of improving software
quality, reliability, and fault-tolerance does,
in fact, result in software that is higher in
quality, or more reliable, or more tolerant
of faults. More recently, the same SDLC
enhancement approach has been applied
to improve the security of software. By
adjusting and, in some cases expanding,
SDLC activities to ensure that they consis-
tently adhere to secure specification,
design, coding, integration, testing,
deployment, and sustainment principles,
organizations such as Microsoft, Oracle,
Motorola, Praxis High Integrity Systems,
and a growing number of others, have
been able to report that soon after doing
so, they were finding vulnerabilities and
weaknesses much earlier in the software’s
life cycle. In turn, those organizations
were able to eradicate problems at a much
lower cost than ever before. Moreover, the
organizations that institutionalized repeat-
ed use of security-enhanced SDLC practices
found that, over time, the enhanced prac-
tices became second-nature to their devel-
opers, and fewer and fewer vulnerabilities
and weaknesses appeared in their software

Enhancing the Development Life Cycle
To Produce Secure Software

Over the past decades, efforts to enhance software development life cycle (SDLC) practices have been shown to improve soft-
ware quality, reliability, and fault-tolerance. More recently, similar strategies to improve the security of software in organiza-
tions such as Microsoft, Oracle, and Motorola have resulted in software products with less vulnerabilities and greater depend-
ability, trustworthiness, and resilience. In its mission to improve the security of software used in America’s critical infra-
structure and information systems, the Department of Homeland Security’s (DHS) Software Assurance Program has spon-
sored the creation of the book Enhancing the Development Life Cycle to Produce Secure Software, a source of
practical information intended to help developers, integrators, and testers identify and systematically apply security and assur-
ance principles, methodologies, and techniques to current SDLC practices, and thereby increase the security of the software
that results. Unlike the numerous other books on secure software development, Enhancing the Development Life Cycle
does not espouse any specific methodology, process model, or development philosophy. Instead it explains the essentials of what
makes software secure, and takes an unbiased look at the numerous security principles and secure development methodologies,
practices, techniques, and tools that developers are finding effective for developing secure software – information that readers
can leverage in defining their own SDLC security-enhancement strategies.

Karen Mercedes Goertzel
Booz Allen Hamilton

24 CROSSTALK The Journal of Defense Software Engineering September 2008

September 2008 www.stsc.hill.af.mil 25

in the first place. Not only that, but they
also noted that their software’s depend-
ability, trustworthiness, and resilience also
improved.

Enhancing the Development
Life Cycle to Produce Secure
Software
This year, the DHS sponsored the revision
of its 2006 document, “Security in the
Software Life Cycle: Making Development
Processes – and Software Produced by
Them – More Secure1.” The new docu-
ment, retitled “Enhancing the Software
Life Cycle to Produce Secure Software,”
transforms what was essentially a com-
pendium of software security assurance
concepts and overviews of methodologies,
process models, sound practices (also
known as best practices), and supporting tech-
nologies that, when used, had been report-
ed by their advocates to produce software
that is more secure than software built by
more traditional methods and tools.

By contrast, the authors of
“Enhancing the Software Life Cycle” have
transformed their previous survey of the
software assurance domain into a source
of practical information to enable devel-
opers, integrators, and testers to identify
and systematically apply security and
assurance principles, methodologies, and
techniques to enhance their current SDLC
practices. The revision’s focus has been
narrowed and its concept discussions
streamlined, while its pragmatic technical
content has been expanded and deepened
and augmented with extensive lists of ref-
erences to information (online and in
print) on how to implement the various
techniques and methodologies described
in the document. The new version also
reflects pertinent technological, method-
ological, and philosophical advances that
have occurred in the software and soft-
ware assurance domain since the release of
“Security in the Software Life Cycle” more
than two years ago.

Several other developments made this
revision possible. The Department of
Defense (DoD) Technical Information
Center (DTIC) sponsored the public
release of “Software Security Assurance:
A State-of-the-Art Report,” which cap-
tured and updated much of the survey-
type information in “Security in the
Software Life Cycle.” In addition, DHS
produced its drafts of “Software
Assurance in Acquisition2,” and “Practical
Measurement Guidance for Software
Assurance and Information Security3.”
The DoD drafted “Engineering for
System Assurance”4, the DTIC-sponsored

“Project Management for Software
Assurance: A State-of-the-Art Report,”5

and Addison-Wesley published “Software
Security Engineering: A Guide for Project
Managers” as part of its Software Security
Series6. Collectively, these publications
address many concerns of the secondary
intended audience for “Security in the
Software Life Cycle,” including acquisition
managers, project managers, system engi-
neers, and information security practition-
ers, enabling “Enhancing the Software
Development Life Cycle” to focus on its
primary audience of developers, integra-
tors, and testers.

Unlike the steadily increasing number
of other books on secure software devel-
opment, secure programming, application
security, and software security testing,
“Enhancing the Development Life Cycle”
strives to remain methodology/process-agnostic.
Its intent is to explain the essentials and
characterize the advantages of a number
of security principles, and secure develop-
ment methodologies, practices, and tech-
niques that have proven effective in the
security-enhancement of SDLC activities.

“Enhancing the Development Life
Cycle” is currently undergoing a final
review by the DHS/DoD co-sponsored
Software Assurance Working Groups.
Based on comments from those reviewers,
the final draft will be produced for public
comment late this summer. It will be avail-
able for download from the Build Security
In Web site at <https://buildsecurityin.us
-cert.gov/daisy/bsi/dhs.html>.u

Notes
1. Goertzel, Karen Mercedes, and Joe

Jarzombek. “Security in the Software
Life Cycle.”CrossTalk. Sept. 2006.
Accessed 30 May 2008 at <www.
stsc.h i l l .af.mi l/crossta lk/2006/
09/0609Jarzombek Goertzel.html>.

2. Accessed 30 May 2008 at <https://
buildsecurityin.us-cert.gov/daisy/bsi/
908.html?branch=1&language=1>.

3. Accessed 10 June 2008 at <https://
buildsecurityin.us-cert.gov/swa/
downloads/SwA_Measurement.pdf>.

4. Accessed 30 May 2008 at <www.acq.
osd.mil/sse/ssa/docs/SA+Guidebook
+v905-22Apr08.pdf>.

5. Abstract accessed 30 May 2008 at
<https://www.thedacs.com/techs/
abstracts/abstract.php?dan=347617>.

6. Mead, Nancy R., et.al. Software Secur-
ity Engineering: A Guide for Project
Managers. Upper Saddle River, NJ:
Addison-Wesley, 2008.

Enhancing the Software Development Life Cycle to Produce Secure Software

About the Author

Karen Mercedes Goertzel,
Certified Information
Systems Security Profes-
sional, is a subject-mat-
ter expert in software
assurance, cyber security,

and information assurance. She sup-
ports the DHS’ software assurance pro-
gram, not least as lead author/editor of
“Security in the Software Life Cycle.”
Goertzel coordinated the Information
Assurance Technology Analysis Center
(IATAC)/ Data and Analysis Center for
Software “Software Security Assurance:
A State-of-the-Art Report,” as well as
IATAC’s “The Insider Threat to
Information Systems: A State-of-the-
Art-Report.” She was a contributing
author to the National Institute of
Standards and Technology Special
Publication 800-95, “Guide to Secure
Web Services,” editor/contributing
author of the National Security
Agency’s “Guidance for Addressing
Malicious Code Risk,” and has been
published previously in CrossTalk.
As lead technologist for the Defense
Information System Agency’s Appli-
cation Security Project from 2002-2004,
she was the leading contributor to the
DoD Application Security Developer’s
Guides upon which the Defense
Information System Agency’s Appli-
cation Security and Development Se-
curity Technical Implementation Guide
is (in large part) based. Goertzel has
presented at numerous conferences and
workshops, including the American
Institute of Engineers’ 2008 Military
Open Source Software Conference and
the DoD’s 2008 System and Software
Technologies Conference. Before join-
ing Booz Allen Hamilton, she was a
specialist in the specification and archi-
tecture of high assurance cross-domain
information sharing solutions for
defense and civil establishments in the
U.S., Canada, Australia, and NATO.

Booz Allen Hamilton
8283 Greensboro DR
H5061
McLean, VA 22102
Phone: (703) 902-6981
Fax: (703) 902-3537
E-mail: goertzel_karen@bah.com

Safety-critical systems are important in
everyday life and are used to manage

difficult tasks that may otherwise be
impossible to do. Many industries use sys-
tems that pose potential hazards to the
general public, such as systems designed
for the aviation and social engineering
industries. When systems are developed
for use in hazardous situations, develop-
ment strategies and ethics standards must
change to fit the needs of the project in
order to ensure the safety of employees
and the general public. As the demand for
these systems continues to grow, stan-
dards and strategies developed to keep
safety-critical software safe will continue
to evolve.

Case Studies
To illustrate certain points, incidents
involving failures in Union Carbide plants,
the Patriot Missile Defense System, Iran
Air Flight 655, and Therac-25 will be ana-
lyzed.

Union Carbide
Around midnight on December 2, 1984,
a large amount of water was introduced
into a Methyl Isocyanine (MIC) storage
tank at Union Carbide’s Bhopal, India
pesticide plant, producing one of the
worst industrial accidents in history.
Once mixed with water, the MIC pro-
duced a vapor that escaped through the
ventilation system into the atmosphere.
Quickly afterward, the MIC began to
decompose into many different compo-
nents, including cyanide gas, and “... the
immediate death toll from the cyanide
release was in excess of 2,000 people”
[1]. In the years to follow, the total death
and injury counts ranged in the hundreds
of thousands.

Though explanations vary, most
attribute the disaster to a combination of
human error and faulty safety systems.
The system also lacked software safe-
guards that would prevent water mixture
if certain hardware safeguards were not
in place.

Patriot Missile Defense System
In 1991, a software design error in the
Patriot Missile Defense System caused the
deaths of 28 U.S. soldiers when a missile
was fired at the wrong destination. After
investigation, it was determined the error
was due to differences in the clocks of the
internal missile system and the global sys-
tem, resulting in a miss when intercepting
an incoming missile.

Iran Air Flight 655
Iran Air Flight 655, a civilian air flight
traveling on an approved flight path, was
shot down by a U.S. guided missile cruiser
on July 3, 1988. A U.S. Navy investigation
discovered the plane was shot down
because of both a bug in the Advanced
Electronic Guidance and Instrumentation
System (AEGIS) aboard the craft along
with bad decision-making skills by the
commanding officer.

At no time did the AEGIS system fail
completely; the order to fire was given by
the commanding officer because of oper-
ator error and lack of judgment. Once the
aircraft was identified by AEGIS, the sys-
tem then proceeded to ask the aircraft for
its friend or foe (FOF) status. The com-
mercial aircraft then responded with the
code commair, identifying itself as a com-
mercial aircraft. After trying to confirm
the FOF status with repeated radio com-
munication, warning signals were given to
have the aircraft change course.

Without any response from the air-
craft, AEGIS was instructed to read the
FOF signal from the plane again. This
posed a problem as AEGIS could not read
the FOF signal from the same plane twice
without rebooting, causing the system to
read the signal of a fighter jet stationed at
a nearby air base. With a new signal indi-
cating a military aircraft, the commander
issued the order to fire.

Therac-25
Between June 1985 and January 1987
Therac-25, a Medical Linear Accelerator
designed by Atomic Energy of Canada

Limited (AECL), malfunctioned multiple
times. These malfunctions resulted in the
deaths of three patients, with many more
being injured.

Unlike previous inventions by AECL,
the Therac-25 did not use proven hard-
ware with interlocks to ensure safety.
Instead, Therac-25 relied completely on
software modified from older systems in
order to reduce costs [2]. Because of this
design choice, there was no safety proto-
col when the software failed.

Based on user feedback, AECL modi-
fied the software before the initial release
to include a quick re-entry method that
allowed the operator to skip re-entry of
certain treatment information [2]. This
step was initially used to ensure the patient
was getting the correct dosage prescribed.
However, the change was not thoroughly
tested, and as a result a software bug was
never found.

If used extremely quickly, the system
would generate an error and subsequently
notify the operator of a cryptic error mes-
sage. After resetting the device to clear the
error, the machine would not indicate any
dosage was applied, but the patient would
receive a hazardous overdose of electrons.

Identifying Hazards
Hazard analysis, though important in
every software engineering discipline, has
an extremely pronounced role when deal-
ing with safety-critical systems. There are
several methods to perform hazard analy-
sis, but before analyzing the hazards they
must be identified.

As stated in [3], “There does not
appear to be any easy way to identify haz-
ards within a given system.” Because of
this fact, many identification methods are
often used in order to find as many haz-
ards as possible in a given system. The pri-
mary techniques used in this process are
the Delphi Technique and joint applica-
tion design (JAD).

Delphi Technique
The Delphi Technique, developed by the

Hazardous Software Development

Developing safety-critical software is often an extremely complicated process, and if managed incorrectly could have the ten-
dency to cause more harm than good. In order to deal with the challenge of writing safety-critical software, certain considera-
tions must be followed. Different case studies will be used in this article to illustrate points about the ethics standards, haz-
ard identification challenges, and aftermath management techniques needed to effectively manage the development and deploy-
ment of safety-critical software.

Corey P. Cunha
Savard Engineering

26 CROSSTALK The Journal of Defense Software Engineering September 2008

September 2008 www.stsc.hill.af.mil 27

Rand Corporation in the early 1980s, is an
identification technique that aims at gath-
ering different ideas from different geo-
graphical locations.

The advantages of this technique are
numerous. The technique requires
anonymity, reducing the chance one voice
will be heard over the opinions of others.
This technique also eliminates the need
for participants to congregate, removing
the stress of arguments between partici-
pants and the struggle of a group reaching
a consensus.

Even with its advantages, the Delphi
Technique can be slow to administer.
The technique uses questionnaires, polls,
and other traditional information-gath-
ering techniques. Because of this limita-
tion, the Delphi Technique calls for mul-
tiple iterations, slowing down the
process. The process could also be
slowed by the amount of workload on
the moderator.

JAD
JAD is a hazard brainstorming system pio-
neered by IBM. Generally, JAD meetings
are used in order for a group of people to
reach an agreement on what types of haz-
ards could occur and how those hazards
could affect the system or a person’s qual-
ity of life [3].

JAD development, though fast and
thorough, was originally designed for
other uses then adapted to be used in haz-
ard identification. Because of this, JAD
does not seem to identify hazards as well
as other development styles. JAD also
forces a consensus on the people involved
in the process, which is often difficult to
reach.

Analyzing Hazards
Hazard analysis is the process of examin-
ing all identified hazards, with the goal of
locating the points of failure which cause
the hazards. There are two different types
of analysis: inductive, and deductive tech-
niques. Inductive techniques attempt to
start with answers and generate the ques-
tions during the analysis process, while
deductive techniques look for answers to
questions that are pre-defined. This article
will focus only on inductive techniques,
though, including event tree analysis, fail-
ure modes and effects analysis, hazard and
operability analysis, and fault tree analysis.

Fault Tree Analysis
Fault tree analysis focuses on one hazard
and works to find any events that could
trigger the hazard to occur. The hazard in
question is placed at the top of the tree

with each subsequent event that could
trigger the main hazard underneath it.

Figure 1 shows an example fault tree
diagram of a car where a vehicle collision
is the final outcome. The diagram identi-
fies many points of failure, such as the
brakes and the driver’s ability. While driver
ability cannot be controlled in design, the
brake design can now be prioritized to
ensure safety.

A fault tree diagram can serve many
purposes, the most important being the
ability to determine different factors to a
system failure. Fault tree diagrams can also
be used during all the phases in a software
life cycle, reducing the chances of missing
a hazard after the planning stages.

The main downside to fault tree analy-
sis is the high cost of producing docu-

mentation. Therefore, it is rarely used out-
side of high-risk situations [3].

Event Tree Analysis
Event tree analysis has many similarities to
fault tree analysis, but instead focuses on
finding the outcomes of a system failure.
Figure 2 shows an example of an event
tree diagram for a car brake system. This
specific example looks at a braking hazard,
with the main brake and emergency brakes
being the points of failure. Branching at
each failure point, system developers can
see the outcome of almost every failure
situation.

Hazard and Operability Analysis
Hazard and operability analysis (HOA), or
operating hazard analysis, is a hazard

Brakes
weak

Car
going

too fast

Car hits
object

Driver doesn’t
see object

Object
just around

corner

Driver
asleep

Car fails
to brake

Brakes
fail

Brakes
ineffective

Failure

Failure

Success

Failure

Success

Failure

 Okay

Deer appears
before car

 Brakes Working Emergency Brake Outcome Consequence

Okay

Car stops, but deer
does minimal damage.

Car totaled, possibility
of serious injury to
occupant.

Car stops, but deer
does extensive damage.

1

1

2

3

4

Emergency
Brake

Figure 2: A Sample Event Tree Analysis Document

Figure 1: A Sample Fault Tree Analysis Document

Hazardous Software Development

Brakes
weak

Car
going

too fast

Car hits
object

Driver doesn’t
see object

Object
just around

corner

Driver
asleep

Car fails
to brake

Brakes
fail

Brakes
ineffective

Failure

Failure

Success

Failure

Success

Failure

 Okay

Deer appears
before car

 Brakes Working Emergency Brake Outcome Consequence

Okay

Car stops, but deer
does minimal damage.

Car totaled, possibility
of serious injury to
occupant.

Car stops, but deer
does extensive damage.

1

1

2

3

4

Emergency
Brake

analysis technique that requires attention
during all stages of the software engineer-
ing development cycle. By using HOA, a
project manager can ensure the maximum
number of hazards are identified and cor-
rected before product release [3].

HOA uses two different steps in order
to analyze hazards. First, each hazard is
either classified into being a human hazard
or an environmental hazard. After group-
ing the hazards, they are analyzed further
to generate a list of problems that can
result from each specific hazard. Each
point in the process is then checked to see
if it is a safety-critical concern. If deemed
safety-critical, the hazard is analyzed to
determine how to minimize the possibility
of its occurrence.

This type of hazard analysis could
have been used for the system at Union
Carbide. By searching for potential haz-
ards throughout every step of the design
process, the development team may have
found more points of failure in the system
and designed safeguards around these fail-
ure points.

Failure Modes and Effects Analysis
Failure modes and effects analysis was
first developed in 1984 by the Department
of Defense as a measure to prevent haz-
ardous failures of critical systems. This
method uses a table structure to take every
component of the system and evaluate
different failure modes for that compo-
nent. This type of analysis also is used to
find [3]:
• The effect of component failure.
• The cause of component failure.
• The occurrence chances.
• The severity of the problem.
• The probability of detecting the prob-

lem before the hazardous situation
occurs.
Figure 3 shows an example of a fail-

ure modes and effects document based
around a vehicle tie bar bracket. By ana-
lyzing all possible failure modes, design-
ers of the tie bar bracket can see that
invalid specifications of certain parts

could cause the bracket to fail.

Examples
The blame for Bhopal was primarily
placed on the shoulders of the developers
of the system, not on the operators them-
selves [1]. Several ways are listed that the
development team could have been better
prepared for when working on a safety-
critical system. Some points described in
[4] include:
• Setting learning objectives for the
developers, such as:

° Assigning a design manager to
ensure safety precautions are
taken.

° Creating a safety program to
oversee the project.

° Conducting random audits of
software.

• Making sure employees are receiving
education and not shrugging off their
responsibilities.

• Learning from past mistakes of system
failures.

• Including safety-critical engineering top-
ics into software engineering courses.

A couple reasons why safety is often given
second-place status to other factors in
design is provided in [5]. Because safety
issues often are ignored or unknown,
these issues generate a substantial amount
of risk to product success and personal
safety. These are risks outlined in [3]

which must be taken into consideration
when doing both hazard identification and
analysis. Some other risks include the fol-
lowing:
• Developers not conforming to the

safety engineering processes due to
time restraints.

• Developer lack of safety-oriented
training.

• Lack of automated safety shutdown
procedures in an emergency situation.

Conclusion
Had the design team at Bhopal used one
of these development strategies, they
could have been more prepared for the
conditions which caused the 1984 disaster.
If safety education and safety-minded
development were taken into account ear-
lier in the design process, the system may
have prevented the operator from mixing
the solution unless the certain safety con-
ditions were met.

Hazard identification and analysis is
extremely important in any safety-critical
system, allowing for potential hazards to
be found and analyzed before they cause
problems in a final product.

These steps also go hand-in-hand with
verification and validation (V&V) steps
defined by the Institute of Electrical and
Electronics Engineers (IEEE) standards
document 1012. This document defines
guidelines on how to first identify and
manage hazards and risks. V&V steps
ensure that problems are documented and
then followed through, resulting in safer
systems.

Codes of Ethics
With the amount of safety-critical systems
currently in use, ethics play a larger role in
software engineering today than they ever
have in the past. The Computer Society, in
cooperation from the IEEE, put together
a set of ethics codes which all software
engineers and designers should follow in
order to assure software quality and safety.
The standards relating to hazardous devel-
opment discussed in [4] include, but are
not limited to:
• Assuring that software engineers

working on a project take responsibili-
ty for the code they write or decisions
they make. For example, AECL never
revealed the developer of the Therac-
25 system; therefore, there was never a
person to question about the software
issues. This is often hard to enforce, as
the original engineer may not be part
of the company anymore.

• Approving software only if it meets
specifications of safety and perfor-
mance, passes all tests required, and

Best Practices

28 CROSSTALK The Journal of Defense Software Engineering September 2008

 Failure
Mode

Effect of Failure Cause of Failure Occurrence Severity
Probability

of
Detection

Bracket
fractures

Stabilizing function of tie
bar removed. All engine
motion transferred to
mountings.

Inadequate specification
of hole-to-edge distance

1 7 10

 Bracket
corrodes

As above Inadequate specification
for preparation of
bracket

1 5 10

 Fixing bolts
loosen

As above Bolt torque inadequately
specified

5 5 8

 Bolt material or thread
type inadequate

1 5 10

As aboveAs above

Figure 3: A Sample Failure Modes and Effects Analysis Document for a Tie Bar Bracket

“When a safety-critical
system does fail, it
then becomes the
responsibility of the

company to follow up
and take charge of

the problem.”

Hazardous Software Development

September 2008 www.stsc.hill.af.mil 29

does not hinder the life or safety of a
person.

• Ensuring that any end-user documen-
tation for the software is fully pre-
pared. This was also a problem in the
Therac-25 system, as AECL did not
include definitions of their error mes-
sages inside of the operator’s manual.
Because of this, many users of the sys-
tem just bypassed errors the system
displayed.

• Disclosing any risks or hazards known
about the system prior to the installa-
tion of the product.

• Cooperating with any concerns direct-
ed at the company regarding safety.
This includes fully investigating any
safety claims. In the case of AEGIS,
the company quickly changed their
systems over to the Linux operating
system in order to fix rebooting prob-
lems. Therac-25 did, in some respects,
cooperate with the customers but
refused to take any extra actions until
it was proved that their product was
causing problems.
Besides the examples mentioned,

Union Carbide possibly violated ethical
standards by not adding safety functions
to their software. Problems with the sys-
tem, though probably known during
development, did not implement any safe-
ty interlocks to stop chemical mixings
without at least one of the safety imple-
mentations in place. AECL also violated
ethical standards, even going so far as con-
tinuing sales of Therac-25 units after mul-
tiple accounts of product over dosages.
Iran Air Flight 655 was shot down because
the developers of AEGIS forced reboots
after an active FOF signal was sent to a
plane. Because the system was not forced
to reboot, this could constitute as an ethi-
cal conflict.

Aftermath Management
When a safety-critical system does fail, it
then becomes the responsibility of the
company to follow up and take charge of
the problem. There are many ways to deal
with the problem; one of them being a
process called closed loop corrective
action (CLCA).

CLCA
CLCA is a process developed by the
International Organization for Standard-
ization (ISO) standards foundation in
order to make sure companies respond
correctly to reports of hazardous situa-
tions. The usage of the CLCA process
may either be triggered by ISO 9000 non-
compliance or by concerns from the com-
pany itself. Depending on the severity of

the problem, the system may even require
a complete rewrite of the working build
[6]. CLCA, also known as corrective and
preventive action, is something that is
planned in order to prevent an action
from happening in the future. Closed loop
just means the development process is
closed until problems with the system are
corrected. It is described in [6] as:

The pattern of activities which
traces the symptoms of a problem
to its cause, produces solutions for
preventing the recurrence of the
problem, implements the changes
and monitors that the changes have
been successful.

There are a couple of steps to using
CLCA:
1. Identify the problem.
2. Find the root cause of the problem.
3. Define procedures to correct.
4. Implement the new changes.
5. Follow up on the changes.

Results
CLCA processes could have helped in
both the Bhopal and Therac-25 incidents.
Bhopal could have recalled their entire
tank mixing solutions after the incident
and created measures that prevented the
system from running without safety mea-
sures in place.

Therac-25 could have used some sort
of CLCA to handle some of the concerns
by medical professionals after the system
killed three people. AECL denied respon-
sibility at first because they could not
reproduce the problem. After the first
scare, AECL did not do extensive testing
on each claim, stating that the system was
completely safe [2].

Conclusion
By using hazard identification and analysis
techniques, many of the problems that
plagued Union Carbide, the Patriot Missile
System, AEGIS, and Therac-25 could
have been avoided. These techniques
allow for systems engineers and software
developers to find and remove hazards
and risks before they turn into liabilities.
Along with these techniques, CLCA
allows for companies to efficiently deal
with system failures in an ethical way.
Using these preset strategies and learning
from past mistakes, companies can avoid
lawsuits and make products safer for con-
sumers.u

References
1. Kopec, D., and S. Tamang. “Failures in

Complex Systems: Case Studies,

Causes, and Possible Remedies.” ACM
SIGCSE Bulletin, June 2007, Vol. 39,
Issue 2 <http://portal.acm.org/cita
tion.cfm?id=1272905>.

2. Levenson, N.G., and C.S. Turner. “An
Investigation of the Therac-25 Acci-
dents.” Computer July 1993. ACM
Digital Library, Los Alamitos, CA
<http://portal.acm.org/citation.cfm?id
=161477.161479&coll=guide&dl=>.

3. Thayer, R.H., and M.J. Christensen.
Software Engineering, Vol. 1 – The
Development Process. 2nd ed.
Hoboken, NJ: John Wiley & Sons,
2005.

4. Chambers, L. A Hazard Analysis of
Human Factors in Safety-Critical
Systems Engineering. Proc. of the
10th Australian Workshop on Safety-
Critical Systems and Software. Apr.
2006. Australian Computer Society
Sydney. Australia, 2006.

5. Piner, M.G. “Computer Society and
ACM Approve Software Engineering
Code of Ethics.” Computer Oct. 1999.

6. Dodd. B. “Closed Loop Corrective
Action.” Online Training Materials.
Spring 2002 <www.freequality.org/
sites/www_freequality_org/docu
ments/Training/Classes%20Spring%
202002/Closed%20Loop%20Correct
ive%20Action.ppt>.

About the Author

Corey P. Cunha is a
software developer and
project manager for
Savard Engineering (SE),
an engineering firm
focused on design, devel-

opment, project management, and sys-
tem analysis, where he designs and codes
various systems built on PHP, ASP.NET,
and SQL Server for social Web sites.
Through SE, he has also built and main-
tained systems involving Global
Positioning System tracking and plotting
capabilities. Cunha currently has an
internship working with GE Healthcare
working in unit test management, test
documentation, and enforcing coding
standards, and is enrolled in the software
engineering program at Champlain
College in Burlington, Vermont.

Savard Engineering
75 Ethan Allen DR
Burlington, VT 05401
E-mail: corey.cunha@

mymail.champlain.edu

Departments

30 CROSSTALK The Journal of Defense Software Engineering September 2008

BACKTALK

September 2008 www.stsc.hill.af.mil 31

Stand-up comedy is a short-lived profession. It requires quick
wit and impeccable timing to deliver a steady stream of laughs

to a short-fused audience. Comics are at the mercy of the audi-
ence, deftly playing off their disposition and predilection. Stand-
up comedy is definitely not for the faint of heart; even the best
comics burn out or decay. Some, like Richard Pryor, Lenny
Bruce, and John Belushi implode. Others, like Eddie Murphy,
Roseanne Barr, and Tim Allen go stale. The smart ones transition
to more secure jobs like sitcoms (Jerry Seinfeld) or movies (Steve
Martin). Few have long, productive careers in stand-up.

One exception is George Carlin, who passed away June 22 at
age 71. Carlin had a remarkably long career of 50-odd years in
stand-up. Sure, he had dry spells as Mr. Conductor and the nar-
rator of Thomas the Tank Engine; nevertheless, stand-up was his
staple, spanning generations. His genius was making you think
while you laugh; for example, “... if crime fighters fight crime and
fire fighters fight fire, what do freedom fighters fight?”

Carlin transformed stand-up comedy by introducing a sub-
versive approach aimed at the hypocrisy in our daily lives. He
produced a rich body of work covering a diverse variety of
issues, but sadly he will be remembered most for the seven words
you can never say on television.

Project managers, especially software project managers, share
similar pressures with stand-up comedians. Good software pro-
ject management requires quick wit, impeccable timing, and con-
sistent delivery to touchy customers. It is definitely not for the
faint of heart or half-hearted.

Rather than tender yet another list of software best practices, I
offer an elegy to projects in trouble with the seven words you can
never say on a flailing project. You never get that list. It’s typically
learned by trial and error, but I’ll save you the pain. The words are:
grit, bliss, instruct, blunt, customer, milestone, and wits.

Let’s start with GRIT. Never say grit on a flailing project
unless you are referring to abrasive granules. Avoid the grit of
indomitable spirit and firmness of character – Rooster Cogburn
grit, true grit. True grit implies project leaders that possess the
tenacity to inspire and the courage to hold accountable. Settle for
cheerleaders, task masters, or bean counters – but never true grit.

Never associate BLISS with a flailing project. Bliss is an
unusual word for any project. Carlin inquired, “If lawyers are dis-
barred and clergymen defrocked, doesn’t it follow that electri-
cians can be delighted?” You, in turn, may ask, do engineers actu-
ally like projects that offer a challenge and sense of accomplish-
ment? Yes, indeed, your staff became engineers because they like
to build and are blissful building things that captivate, fascinate,
and intrigue. Nip that in the bud. Introduce a slow burn of inani-
ty, monotony, and mental torpor to draw oxygen out of the pro-
ject, avert any bliss, and leave the project in pure engineering hell.

Never utter the word INSTRUCT on a flailing project.
Autodidactic managers and engineers agree: they don’t need no
stinkin’ instruction. Managers believe instruction wastes time;
time is money and money is short. Engineers see instruction as
a waste of time, time that should be spent with thingamajigs,
doohickeys, and doodads that intrigue the mind. If you
instruct, you impart knowledge. Imparting knowledge leads to
mutual understanding. Mutual understanding could lead to
direction, purpose, objectives, common processes, and collab-
oration. The next thing you know, project destruct will become
project construct because you dared to instruct. Keep your

head in the sands of credulity.
On a flailing project, you can never be BLUNT. Blunt will

only invite the four horsemen of flourishing projects: realism,
directness, honesty, and frankness. Imagine the shock you would
impose if requirements were realistic and clear, plans direct and
uncomplicated, budgets honest and pragmatic, and project com-
munication frank and straightforward. Imagine the hurt feelings
and bruised egos. Imagine the nerve-racking decisions and ardu-
ous trade-offs. For the love of political correctness, you can’t
allow that to happen. Play it safe. Remain idealistic, apposite, and
equivocal.

CUSTOMER? What customer? Never mention the customer
on a flailing project. Involving the customer will complicate
things – after all, they can’t even congeal requirements? In today’s
society, customers should drive up, order, pick-up, and drive off.
No questions asked. Do not be appeasers. Leave your customers
out of the loop.

If you find yourself on a flailing project, never bring up the
word MILESTONE. After all, a milestone is a stone, stones
weigh you down and milestones weigh you down with account-
ability. Why gild the lily with measures and meetings? Who wants
to know where your project really stands? Who needs course cor-
rections? If you must have milestones, choose one and only one;
and at all costs avoid the milestone’s progeny – the inchstone.

Finally, never, under any circumstance, allude to WITS on a
flailing project. Nothing subjugates a project faster than astute
team members who perceive relationships between seemingly
incongruous or disparate concepts, designs, and processes. Top
talent is expensive, headstrong, and hard to control. Stop dream-
ing of a deus ex machina. Save money with desultory, nebbish, dila-
tory engineers. They will validate your best guesses and ensure
your worst fears. Follow Carlin’s advice, “Never underestimate
the power of stupid people in large groups.”

I apologize to managers in control and command of their
software projects. This article offers you little. With time on your
hands, maybe you can solve Carlin’s greatest conundrum, “When
someone asks you, ‘a penny for your thoughts’ and you put your
two cents in, what happens to the other penny?”

—Gary A. Petersen
Arrowpoint Solutions, Inc.
gpetersen@arrowpoint.us

Seven Words You Can Never Say on a Flailing Project

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover

	Table of Contents

	From the Publisher

	Application Security
	Securing Legacy C Applications UsingDynamic Data Flow Analysis
	Building Secure Systems Using Model-BasedEngineering and Architectural Models
	Practical Defense in Depth
	Supporting Safe Content-Inspection of Web Traffic

	Best Practices
	Enhancing the Development Life CycleTo Produce Secure Software
	Hazardous Software Development

	Web Sites

	Coming Events

	STSC 2009 Ad
	BackTalk

	Back Cover

